Molecular Dynamics Simulation of Serotonin Transport Protein Complex with 6-Hydroxy-1-Methyl-1,2,3,4-Tetrahydro-β-Carboline Ligand from Chocolate (Theobroma cacao L.) Isolate

Farach Khanifah, Enade Perdana Istyastono

Abstract


6-hydroxy-1-methyl1,2,3,4-tetrahydro-β-carboline (6OHMTHβC) is a chocolate derivate that has antidepressant potency. It can increase dopamine and serotonin secretion, which leads to mood improvement. This method was carried out using computational molecular docking simulations (in silico). The research design was computational-based exploratory descriptive. The results of molecular docking showed the lowest energy score and the backbone RMSD value ≤2Å. The procedure performed was 6AWP receptor docking without ligand, with native ligand (6OHMTHβC), and with reference ligand (fluvoxamine). This study also performed molecular docking simulations of 6OHMTHβC towards 6AWP to find compounds in the receptor binding pocket. This study also performed dynamics simulations and identified the molecular determinants using PyPLIF-HIPPOS and YASARA Structure software 20.1.24.10 with the Windows 10 operating system. This study succeeded in determining the stability of the dynamics simulation of the serotonin transport protein complex with the reference ligand 6OHMTHβC for 50 ns, and this result corresponds to the RMSD value and binding energy. The determination of binding energy (BE) was calculated from the BE calculation available at YASARA and Ubuntu. The binding energy value of the original ligand was -11.6590 kJ/mol, and the reference ligand was -83880 kJ/mol. The highest RMSD value of the original ligand was 1.39292Å, while the RMSD value of the reference ligand was 1.71072Å. The essential amino acid carried out was 438Ser with hydrogen bond interactions, so 6OHMTHβC was considered a competent antidepressant candidate.


Keywords


6AWP; 6OHMTHβC; Antidepressant candidate

Full Text:

PDF

References


Bulusu, G., Desiraju, G.R., 2020. Strong and weak hydrogen bonds in protein–ligand recognition. Journal of the Indian Institute of Science, 100, 31-41.

Chan, M. C., Selvam, B., Young, H. J., Procko, E., Shukla, D., 2022. The Substrate Import Mechanism of The Human Serotonin Transporter. Biophysical Journal, 121(5), 715-730

Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., Taylor, R., 2005. Comparing protein–ligand docking programs is difficult. Proteins: Structure, Function, and Bioinformatics, 60(3), 325-332.

Coleman, J. A., Green, E. M., Gouaux, E., 2016. X-Ray Structures and Mechanism of the Human Serotonin Transporter. Nature, 532(7599), 334– 339.

Escobar, L., Ballester, P., 2021. Molecular recognition in water using macrocyclic synthetic receptors. Chemical Reviews, 121(4), 2445-2514.

Fatiya, N.U., Kusnadi, I.F., Riyaldi, M.R., Dipadharma, R.H.F., Suhandi, C., Hidayat, S., Muchtaridi, M., 2022. Studi in-silico Senyawa pada bawang putih (Allium sativum l.) Sebagai inhibitor neuraminidase pada influenza. Farmaka, 20(3), 1-11.

Herraiz, T., 2000. Tetrahydro-β-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. Journal of agricultural and food chemistry, 48(10), 4900- 4904.

Istyastono, E.P., 2012. Construction and optimization of structure-based virtual screening protocols to identify cyclooxygenase-1 inhibitors using open babel, spores, and plants. Indonesia. J. Chem., 12(2), 141-145.

Istyastono, E.P., 2021. Secangkir Kopi dan Penemuan Obat Diabetes. Sanata Dharma University Press. Yogyakarta

Istyastono, E.P., Riswanto, F.D.O., 2022. Molecular dynamics simulations of the caffeic acid interactions to dipeptidyl peptidase iv. International journal of applied pharmaceutics, 14(4), 274-278.

Khanifah, F., Sari, E.P., Susanto, A., 2021. Efektivitas kombinasi ekstrak etanol kunyit (Curcuma longa linn.) dan cokelat (Theobroma cacao) sebagai kandidat antidepresan pada tikus putih (Rattus norvegicus) galur wistar. Jurnal Wiyata: Penelitian Sains dan Kesehatan, 8(2), 103-110.

Kulkarni, R.R., Kulkarni, P.R., 2013. Linezolid-induced near-fatal serotonin syndrome during escitalopram therapy: case report and review of the literature. Indian Journal of PsychologicalvMedicine, 35(4), 413-416.

Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 2012. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 64(1-3): 4-17.

Liu, K, Kokubo H., 2017. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations. J Chem Inf Model, 57(10), 2514–22.

Nugraha, G., Istyastono, E., 2021. Virtual Target Construction for Structure-Based Screening in The Discovery of Histamine H2 Receptor Ligands. International Journal Applied Pharmaceutics, 13(3), 239-241.

Riandono, F.D., Istyastono, E.P., 2022. Identifikasi Determinan Molekul Interaksi STK630921 pada Interleukin-17A. Jurnal Sains Farmasi & Klinis, 9(1), 57-63.

Schneider, G., 2014. De novo molecular design, Wiley-VCH Verlag GmbH and Co., Weinheim, Germany

Scholey, A., Owen, L., 2013. Effects of chocolate on cognitive function and mood: A systematic review. Nutrition Reviews, 71(10), 665-681.




DOI: https://doi.org/10.24071/jpsc.005939

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPSC Stats