Secondary Metabolites Production of Bacillus spp. Isolated from Sea Cucumbers (Holothuria scabra) and their Activity against Mycobacterium smegmatis

Maya Dian Rakhmawatie(1*), Aida Zakiyatul Fikriyah(2), Ika Dyah Kurniati(3), Nanik Marfu'ati(4), Stalis Norma Ethica(5),

(1) Universitas Muhammadiyah Semarang
(2) Universitas Muhammadiyah Semarang
(3) Universitas Muhammadiyah Semarang
(4) Universitas Muhammadiyah Semarang
(5) Universitas Muhammadiyah Semarang
(*) Corresponding Author

Abstract


New anti-tuberculosis agents are very important due to Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis problems. Mycobacterium smegmatis can be used to replace Mycobacterium tuberculosis as bacteria test to increase the velocity of anti-tuberculosis screening. To answer the need for new drugs, exploration of secondary metabolites from Bacillus spp. can be conducted. Bacillus spp. are known to produce antimicrobials, including discovery of iturins, fengycins, and pumilacidins. This study explored the Bacillus spp. isolated from fermented intestines of Holothuria scabra. The production of Bacillus sp. Holothuria scabra Fermented Intestine (HSFI) secondary metabolites was done using culture media containing starch as a carbon source, as well as yeast and peptone as a nitrogen source. Production capacity of secondary metabolites of Bacillus sp. HSFI was calculated, to determine its potential as an antibacterial producer. Inhibition testing of secondary metabolites of Bacillus sp. HSFI against M. smegmatis was performed using the Kirby-Bauer disk diffusion method. Based on the results of the inhibition test, it was concluded that Bacillus sp. HSFI-9 has the greatest potential to inhibit the growth of M. smegmatis, with a moderate inhibition (7.67 mm). Production of secondary metabolites from Bacillus sp. HSFI-9 is exceptionally good with an extract production capacity of 24.6 mg/L.

Keywords


Anti-tuberculosis; Bacillus; Mycobacterium smegmatis; Secondary metabolite

Full Text:

PDF

References


Abdel-Razek, A.S., El-Naggar, M.E., Allam, A., Morsy, O.M., Othman, S.I., 2020. Microbial natural products in drug discovery. Processes, 8(4), 1–19.

Al-Ansari, M., Kalaiyarasi, M., Almalki, M.A., Vijayaraghavan, P., 2020. Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. Journal of King Saud University - Science, 32(3), 1993–1998.

Alderwick, L.J., Harrison, J., Lloyd, G.S., Birch, H.L., 2015. The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb Perspect Med,5(8), 1–15.

CLSI, 2020. Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. CLSI supplement M100., Cllinical and Laboratory Standards Institute. Wayne, Pennsylvania.

de Brito, R.C., da Silva, G.N., Farias, T.C., Ferreira, P.B., Ferreira, S.B., 2017. Standardization of the safety level of the use of DMSO in viability assays in bacterial cells, in: MOL2NET International Conference Series on Multidisciplinary Sciences. pp. 1–6.

de Oliveira, J.A., Williams, D.E., Andersen, R.J., Sarragiotto, M.H., Baldoqui, D.C., 2020. Pumilacidins A-E from sediment-derived bacterium Bacillus sp. 4040 and their antimicrobial activity evaluation. J. Braz. Chem. Soc., 31(2), 357–363.

Devi, S., Kiesewalter, H.T., Kovács, R., Frisvad, J.C., Weber, T., Larsen, T.O., Kovács, Á.T., Ding, L., 2019. Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synth. Syst Biotechnol., 4(3), 142–149.

Djaenuddin, N., Muis, A., 2015. Karakteristik bakteri antagonis Bacillus subtilis dan potensinya sebagai agens pengendali hayati penyakit tanaman. Prosiding Seminar Nasional Serealia, 489–494.

Harwood, C.R., Mouillon, J.M., Pohl, S., Arnau, J., 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev., 42(6), 721–738.

Hidayati, N., Fuad, H., Munandar, H., Zilda, D.S., Nurrahman, N., Fattah, M., Oedjijono, O., Samiasih, A., Ethica, S.N., 2021a. Proteolytic and clot lysis activity screening of crude proteases extracted from tissues and bacterial isolates of Holothuria scabra. IOP Conference Series: Earth and Environmental Science, 755(1), 1–12.

Hidayati, N., Nurrahman, N., Fuad, H., Munandar, H., Zilda, D.S., Ernanto, A.R., Samiasih, A., Oedjijono, O., Ethica, S.N., 2021b. Bacillus tequilensis isolated from fermented intestine of Holothuria scabra produces fibrinolytic protease with thrombolysis activity. IOP Conference Series: Earth and Environmental Science, 707(1), 1-9.

Hudzicki, J., 2009. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol, American Society For Microbiology.

Kai, M., 2020. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Frontiers in Microbiology, 11(April), 1–21.

Kaspar, F., Neubauer, P., Gimpel, M., 2019. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053.

Khan, Z., Shafique, M., Nawaz, H.R., Jabeen, N., Naz, S.A., 2019. Bacillus tequilensis ZMS-2: A novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials. Pakistan journal of pharmaceutical sciences, 32(4), 1913–1918.

Kumar, S.N., Nambisan, B., Sundaresan, A., Mohandas, C., Anto, R.J., 2014. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Annals of Microbiology, 64(1), 209–218.

Lelovic, N., Mitachi, K., Yang, J., Lemieux, M.R., Ji, Y., Kurosu, M., 2020. Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads againts Mycobacterium tuberculosis. Journal of Antibiotics, 73(11), 780–789.

Mardiana, N.A., Murniasih, T., Rukmi, W.D., Kusnadi, J., 2020. Marine bacteria potential as new antibiotic inhibit Saccharomyces aureus. Jurnal Teknologi Pertanian, 21(1), 49–56.

Miggiano, R., Rizzi, M., Ferraris, D.M., 2020. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens, 9(385), 10–13.

Nataraj, V., Varela, C., Javid, A., Singh, A., Besra, G.S., Bhatt, A., 2015. Mycolic acids: Deciphering and targeting the Achilles’ heel of the tubercle bacillus. Molecular Microbiology, 98(1), 7–16.

National Centre for Disease Control, 2019. Internal Quality Control (IQC) Antimicrobial Susceptibility Tests Using Disk Diffusion. National Programme on Containment of Antimicrobial Resistance, New Delhi.

Nazemi, M., Moradi, Y., Rezvani, G.F., Ahmaditaba, M.A., Gozari, M., Salari, Z., 2017. Antimicrobial activities of semi polar-nonpolar and polar secondary metabolites of sponge Dysidea pallescens from Hengam Island, Persian Gulf. Iranian Journal of Fisheries Sciences, 16(1), 200–209.

Obakiro, S.B., Kiprop, A., K’Owino, I., Andima, M., Owor, R.O., Chacha, R., Kigondu, E., 2022. Phytochemical, cytotoxicity, and antimycobacterial activity evaluation of extracts and compounds from the stem bark of Albizia coriaria welw ex. oliver. Evidence-based Complementary and Alternative Medicine, 7148511, 1–20.

Ouchari, L., Boukeskasse, A., Bouizgarne, B., Ouhdouch, Y., 2019. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biology Open, 8(2), 1–7.

Poernomo, A.T., Nisa, S.K., Aliyah, Z.S., Isnaeni, I., 2020. Effects of carbon and nitrogen sources on the antibacterial activity of Bacillus tequilensis BSM-F symbiotic with Halichondria panicea sponge from the Cabbiya Coast, Madura, Indonesia. Pharmaciana, 10(2), 125.

Pournejati, R., Karbalaei-Heidari, H.R., 2020. Optimization of fermentation conditions to enhance cytotoxic metabolites production by Bacillus velezensis strain RP137 from the persian gulf. Avicenna Journal of Medical Biotechnology, 12(2), 116–123.

Rakhmawatie, M.D., Wibawa, T., Lisdiyanti, P., Pratiwi, W.R., Damayanti, E., Mustofa, 2021. Potential secondary metabolite from Indonesian Actinobacteria (InaCC A758) against Mycobacterium tuberculosis. Iranian Journal of Basic Medical Sciences, 24(8), 1058–1068.

Sánchez, J.G.B., Kouznetsov, V. V., 2010. Antimycobacterial susceptibility testing methods for natural products research. Brazilian Journal of Microbiology, 41(41), 270–277.

Soleha, T.U., 2015. Uji kepekaan terhadap antibiotik. Juke Unila, 5(9), 121.

Sundarsingh T, J.A., Ranjitha, J., Rajan, A., Shankar, V., 2020. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. Journal of Infection and Public Health, 13(9), 1255–1264.

Warditiani, L., 2022. Isolasi dan identifikasi senyawa aktif Lytocarpus phillipinus sebagai bakterisida pada udang. Marina Chimica Acta, 1(1), 4–8.




DOI: https://doi.org/10.24071/jpsc.004843

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.