Molecular Dynamics Simulations of Ethyl-4-[(α-L-rhamnosyloxy)-benzyl]carbamate from Moringa oleifera Lam. as a Dipeptidyl Peptidase-4 Inhibitor

I Gusti Ayu Intan Puspita Dewi(1), Enade Perdana Istyastono(2*),

(1) 
(2) Faculty of Pharmacy, Universitas Sanata Dharma
(*) Corresponding Author

Abstract


Diabetes mellitus is a global health problem that requires innovative solutions. Ethyl-4-[(α-L-rhamnosyloxy)-benzyl]carbamate (ERBC) compound contained in Moringa oleifera Lam. showed potential as a potent dipeptidyl peptidase-4 (DPP4) inhibitor, with an IC50 value of 0.798 µM. Molecular dynamics simulations indicated that ERBC interacts specifically with the active site of DPP4, providing a mechanistic basis for its inhibitory activity. The research utilized the latest technique developed by previously published plug-ins. The molecular docking simulations were performed 100 times. Then, the poses were clustered to sample the probable poses which were then subjected as the inputs in molecular dynamics simulations. Molecular dynamics simulations have shown that the ERBC compound interacts with the DPP4 protein at two possible poses. PyPLIF HIPPOS analysis demonstrated that ERBC, during its second replication, interacts with Glu205 and Glu206, two key amino acids involved in DPP4 activity.

Keywords


Dipeptidyl peptidase-4; Dynamics simulation; Medicinal chemistry; Molecular docking; Moringa oleifera

Full Text:

PDF

References


Abdelazim, A. M., Afifi, M., Abu-Alghayth, M. H., and Alkadri, D.H., 2024. Moringa oleifera: Recent insights for its biochemical and medicinal applications. Journal of Food Biochemistry, 2024, e1270903.

Ahmed, S., Ali, M. C., Ruma, R. A., Mahmud, S., Paul, G. K., Saleh, M.A., Alshahrani, M.M., Obaidullah, A. J., Biswas, S. K., Rahman, M. M., Rahman, M. M., and Islam, M.R., 2022. Molecular docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules (Basel, Switzerland), 27(14), 4526.

Cahyaningsih, R., Phillips, J., Magos Brehm, J., Gaisberger, H., and Maxted, N., 2021. Climate change impact on medicinal plants in Indonesia. Global Ecology and Conservation, 30, e01752.

Istyastono, E., and Gani, M.R., 2021. Identification of interactions of ABT-341 to dipeptidyl peptidase IV during molecular dynamics simulations. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 7(2), 91-98.

Istyastono, E. P., and Prasasty, V. D., 2020. Computer-aided discovery of pentapeptide AEYTR as a potent acetylcholinesterase Inhibitor. Indonesian Journal of Chemistry, 21(1).

Istyastono, E. P., Yuniarti, N., Prasasty, V. D., Mungkasi, S., Waskitha, S. S. W., Yanuar, M. R. S., and Riswanto, F. D. O., 2023. Caffeic acid in spent coffee grounds as a dual inhibitor for MMP-9 and DPP-4 enzymes. Molecules, 28(20), 7182.

Kausar, M. A., 2022. Identifying natural therapeutics against diabetes via inhibition of dipeptidyl peptidase 4: Molecular docking and MD simulation study. Indian Journal of Pharmaceutical Education and Research, 56(1s), s21–s31.

Li, L., Koh, C. C., Reker, D., Brown, J. B., Wang, H., Lee, N. K., Liow, H., Dai, H., Fan, H.-M., Chen, L., and Wei, D.-Q., 2019. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. Scientific Reports, 9(1), Article 1.

Liu, K., Watanabe, E., and Kokubo, H., 2017. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 31(2), 201–211.

Mthiyane, F. T., Dludla, P. V., Ziqubu, K., Mthembu, S. X. H., Muvhulawa, N., Hlengwa, N., Nkambule, B. B., and Mazibuko-Mbeje, S. E., 2022. A review on the antidiabetic properties of Moringa oleifera extracts: focusing on oxidative stress and inflammation as main therapeutic targets. Frontiers in Pharmacology, 13.

Naqvi, A. A. T., Mohammad, T., Hasan, G. M., and Hassan, M. I., 2018. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768.

Oliveira, T. A. da Silva, M. P., Maia, E. H. B., Silva, A. M. da, and Taranto, A. G., 2023. Virtual screening algorithms in drug discovery: A review focused on machine and deep learning methods. Drugs and Drug Candidates, 2(2).

Payghan, P. V., Bera, I., Bhattacharyya, D., and Ghoshal, N., 2018. Computational studies for structure-based drug designing against transmembrane receptors: pLGICs and Class A GPCRs. Frontiers in Physics, 6.

Pieroni, M., Madeddu, F., Di Martino, J., Arcieri, M., Parisi, V., Bottoni, P., and Castrignanò, T., 2023. MD–ligand–receptor: A high-performance computing tool for characterizing ligand–receptor binding interactions in molecular dynamics trajectories. International Journal of Molecular Sciences, 24(14).

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., Williams, R., and IDF Diabetes Atlas Committee., 2019. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843.

Saini, K., Sharma, S., and Khan, Y., 2023. DPP-4 inhibitors for treating T2DM - hype or hope?: An analysis based on the current literature. Frontiers in Molecular Biosciences, 10.

Singh, S., Bani Baker, Q., and Singh, D. B., 2022. Chapter 18—Molecular docking and molecular dynamics simulation. In D. B. Singh and R. K. Pathak (Eds.), Bioinformatics (pp. 291–304). Academic Press.

Torres, P. H. M., Sodero, A. C. R., Jofily, P., and Silva-Jr, F. P., 2019. Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 4574.

Waskitha, S. S. W., Istyastono, E. P., and Riswanto, F. D. O., 2023. Molecular docking study of caffeic acid as acetylcholinesterase inhibitor. Journal of Food and Pharmaceutical Sciences, 867–873.

WHO. (2024). Diabetes. https://www.who.int/westernpacific/health-topics/diabetes

Windah, A. L. L., and Istyastono, E. P., 2024. Computational studies of donepezil and acetylcholinesterase dynamics interactions. Jurnal Farmasi Sains Dan Komunitas (Journal of Pharmaceutical Sciences and Community), 21(1).

Yang, Y., Shi, C.-Y., Xie, J., Dai, J.-H., He, S.-L., and Tian, Y., 2020. Identification of potential dipeptidyl peptidase (DPP)-IV inhibitors among Moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules, 25(1), 189.

Ye, J., Wu, Y., Yang, S., Zhu, D., Chen, F., Chen, J., Ji, X., and Hou, K., 2023. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: A systematic analysis of the Global Burden of Disease Study 2019. Frontiers in Endocrinology, 14.

Zanzabil, K. Z., Hossain, M. S., and Hasan, M. K., 2023. Diabetes mellitus management: An extensive review of 37 medicinal plants. Diabetology, 4(2).




DOI: https://doi.org/10.24071/jpsc.009791

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.