Caffeine and Caffeic Acid as Acetylcholinesterase Inhibitors: In Silico Perspectives

Stephanus Satria Wira Waskitha(1), Bonifacius Ivan Wiranata(2), Julyus Jason Mark(3), Herluin Sekar Krisantia(4), Natalia Kristina(5), Glory Ivana Ardine(6), Chrisologus Ivan Prasetyo(7), Michael Raharja Gani(8), Florentinus Dika Octa Riswanto(9), Enade Perdana Istyastono(10*),

(1) Sanata Dharma University
(2) Sanata Dharma University
(3) Sanata Dharma University
(4) Sanata Dharma University
(5) Sanata Dharma University
(6) Sanata Dharma University
(7) Sanata Dharma University
(8) Sanata Dharma University
(9) Sanata Dharma University
(10) Sanata Dharma University
(*) Corresponding Author

Abstract


Alzheimer's disease (AD) has been recognized as a significant issue affecting population health globally and tended to increase over the years. The utilization of natural products for AD treatments has been widely studied, which possibly offers better outcomes with minimum side effects. Coffee consumption has been subjected as a lifestyle propensity, which offers beneficial advantages including reducing the risk of AD. Bioactive natural compounds contained in coffee such as caffeine and caffeic acid have been experimentally proven to be acetylcholinesterase (AChE) inhibitors, a pivotal target enzyme for AD treatments. This research aimed to explore the dynamics interactions of caffeine and caffeic acid in the AChE active site using the in silico approach. In this study, 100 redocking and docking simulations were implemented before the molecular dynamics (MD) simulations. The 55-ns MD simulations of huprine X, caffeine, and caffeic acid were implemented to study the dynamics interactions. Conformational stability, free energies of binding, and interaction hotspots were identified during the simulations. Our findings informed that caffeine interacted in the active site during the simulations, revealing the importance of the imidazole ring in maintaining the interactions. In contrast, caffeic acid interacted longer in the plausible allosteric site, forming ionic, hydrogen bonds, and aromatic interactions.

Keywords


Acetylcholinesterase; Alzheimer's disease; Caffeic acid; Caffeine; Molecular dynamics

Full Text:

PDF

References


Akomolafe, S.F., Akinyemi, A.J., Ogunsuyi, O.B., Oyeleye, S.I., Oboh, G., Adeoyo, O.O., Allismith, Y.R., 2017. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain—in vitro. NeuroToxicology, 62, 6–13.

Asen, N.D., Okagu, O.D., Udenigwe, C.C., Aluko, R.E., 2022. In vitro inhibition of acetylcholinesterase activity by yellow field pea (Pisum sativum) protein-derived peptides as revealed by kinetics and molecular docking. Frontiers in Nutrition, 9(1021893), 1–18.

Bai, D.L., Tang, X.C., He, X.C., 2000. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Current Medicinal Chemistry, 7(3), 355–374.

Bhat, B.A., Almilaibary, A., Mir, R.A., Aljarallah, B.M., Mir, W.R., Ahmad, F., Mir, M.A., 2022. Natural therapeutics in aid of treating Alzheimer’s disease: A green gateway toward ending quest for treating neurological disorders. Frontiers in Neuroscience, 16(884345), 1–23.

Chen, Y.C., 2015. Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95.

Diallo, B.N., Swart, T., Hoppe, H.C., Tastan Bishop, Ö., Lobb, K., 2021. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Scientific Reports, 11(1), 1–15.

Gani, M.R., Istyastono, E.P., 2021. Determination of caffeic acid in ethanolic extract of spent coffee grounds by high-performance liquid chromatography with UV detection. Indonesian Journal of Chemistry, 21(5), 1281–1286.

Gießel, J.M., Loesche, A., Csuk, R., 2019. Caffeic acid phenethyl ester (CAPE)-derivatives act as selective inhibitors of acetylcholinesterase. European Journal of Medicinal Chemistry, 177, 259–268.

Gobbi, L., Maddaloni, L., Prencipe, S.A., Vinci, G., 2023. Bioactive compounds in different coffee beverages for quality and sustainability assessment. Beverages, 9(1), 1–18.

Grabska-Kobylecka, I., Kaczmarek-Bak, J., Malgorzata, F., Prymont-Przyminska, A., Zwolinska, A., Sarniak, A., Wlodarczyk, A., Glabinski, A., Nowak, D., 2020. The presence of caffeic acid in cerebrospinal fluid: Evidence that dietary polyphenols can cross the blood-brain barrier in humans. Nutrients, 12(5), 1531.

Istyastono, E.P., Riswanto, F.D.O., 2022. Molecular dynamics simulations of the caffeic acid interactions to dipeptidyl peptidase IV. International Journal of Applied Pharmaceutics, 14(4), 274–278.

Istyastono, E.P., Yuniarti, N., Prasasty, V.D., Mungkasi, S., Waskitha, S.S.W., Yanuar, M.R.S., Riswanto, F.D.O., 2023. Caffeic acid in spent coffee grounds as a dual inhibitor for MMP-9 and DPP-4 enzymes. Molecules, 28(20), 1–12.

Khan, H., Marya, Amin, S., Kamal, M.A., Patel, S., 2018. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomedicine and Pharmacotherapy, 101, 860–870.

Li, H., Ye, M., Zhang, Y., Huang, M., Xu, W., Chu, K., Chen, L., Que, J., 2015. Blood-brain barrier permeability of Gualou Guizhi granules and neuroprotective effects in ischemia/reperfusion injury. Molecular Medicine Reports, 12(1), 1272–1278.

Liu, K., Kokubo, H., 2017. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. Journal of Chemical Information and Modeling, 57(10), 2514–2522.

Luque, F.J., Muñoz-Torrero, D., 2024. Acetylcholinesterase: a versatile template to coin potent modulators of multiple therapeutic targets. Accounts of Chemical Research, 57, 450–456.

McCall, A.L., Millington, W.R., Wurtman, R.J., 1982. Blood-brain barrier transport of caffeine: Dose-related restriction of adenine transport. Life Sciences, 31(24), 2709–2715.

Mohamed, T., Osman, W., Tin, G., Rao, P.P.N., 2013. Selective inhibition of human acetylcholinesterase by xanthine derivatives: In vitro inhibition and molecular modeling investigations. Bioorganic and Medicinal Chemistry Letters, 23(15), 4336–4341.

Nichols, E., Steinmetz, J.D., Vollset, S.E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T.T., Al Hamad, H., Alahdab, F., Alanezi, F.M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., Astell-Burt, T., Ayano, G., Ayuso-Mateos, J.L., Baig, A.A., Barnett, A., Barrow, A., Baune, B.T., Béjot, Y., Mequanint Bezabhe, W.M., Bezabih, Y.M., Bhagavathula, A.S., Bhaskar, S., Bhattacharyya, K., Bijani, A., Biswas, A., Bolla, S.R., Boloor, A., Brayne, C., Brenner, H., Burkart, K., Burns, R.A., Cámera, L.A., Cao, C., Carvalho, F., Castro-De-Araujo, L.F.S., Catalá-López, F., Cerin, E., Chavan, P.P., Cherbuin, N., Chu, D.T., Costa, V.M., Couto, R.A.S., Dadras, O., Dai, X., Dandona, L., Dandona, R., De la Cruz-Góngora, V., Dhamnetiya, D., da Silva, D.D., Diaz, D., Douiri, A., Edvardsson, D., Ekholuenetale, M., El Sayed, I., El-Jaafary, S.I., Eskandari, K., Eskandarieh, S., Esmaeilnejad, S., Fares, J., Faro, A., Farooque, U., Feigin, V.L., Feng, X., Fereshtehnejad, S.M., Fernandes, E., Ferrara, P., Filip, I., Fillit, H., Fischer, F., Gaidhane, S., Galluzzo, L., Ghashghaee, A., Ghith, N., Gialluisi, A., Gilani, S.A., Glavan, I.R., Gnedovskaya, E. V., Golechha, M., Gupta, R., Gupta, V.B., Gupta, V.K., Haider, M.R., Hall, B.J., Hamidi, S., Hanif, A., Hankey, G.J., Haque, S., Hartono, R.K., Hasaballah, A.I., Hasan, M.T., Hassan, A., Hay, S.I., Hayat, K., Hegazy, M.I., Heidari, G., Heidari-Soureshjani, R., Herteliu, C., Househ, M., Hussain, R., Hwang, B.F., Iacoviello, L., Iavicoli, I., Ilesanmi, O.S., Ilic, I.M., Ilic, M.D., Irvani, S.S.N., Iso, H., Iwagami, M., Jabbarinejad, R., Jacob, L., Jain, V., Jayapal, S.K., Jayawardena, R., Jha, R.P., Jonas, J.B., Joseph, N., Kalani, R., Kandel, A., Kandel, H., Karch, A., Kasa, A.S., Kassie, G.M., Keshavarz, P., Khan, M.A.B., Khatib, M.N., Khoja, T.A.M., Khubchandani, J., Kim, M.S., Kim, Y.J., Kisa, A., Kisa, S., Kivimäki, M., Koroshetz, W.J., Koyanagi, A., Kumar, G.A., Kumar, M., Lak, H.M., Leonardi, M., Li, B., Lim, S.S., Liu, X., Liu, Y., Logroscino, G., Lorkowski, S., Lucchetti, G., Saute, R.L., Magnani, F.G., Malik, A.A., Massano, J., Mehndiratta, M.M., Menezes, R.G., Meretoja, A., Mohajer, B., Ibrahim, N.M., Mohammad, Y., Mohammed, A., Mokdad, A.H., Mondello, S., Moni, M.A., Moniruzzaman, M., Mossie, T.B., Nagel, G., Naveed, M., Nayak, V.C., Kandel, S.N., Nguyen, T.H., Oancea, B., Otstavnov, N., Otstavnov, S.S., Owolabi, M.O., Panda-Jonas, S., Kan, F.P., Pasovic, M., Patel, U.K., Pathak, M., Peres, M.F.P., Perianayagam, A., Peterson, C.B., Phillips, M.R., Pinheiro, M., Piradov, M.A., Pond, C.D., Potashman, M.H., Pottoo, F.H., Prada, S.I., Radfar, A., Raggi, A., Rahim, F., Rahman, M., Ram, P., Ranasinghe, P., Rawaf, D.L., Rawaf, S., Rezaei, N., Rezapour, A., Robinson, S.R., Romoli, M., Roshandel, G., Sahathevan, R., Sahebkar, A., Sahraian, M.A., Sathian, B., Sattin, D., Sawhney, M., Saylan, M., Schiavolin, S., Seylani, A., Sha, F., Shaikh, M.A., Shaji, K.S., Shannawaz, M., Shetty, J.K., Shigematsu, M., Shin, J. Il, Shiri, R., Santos Silva, D.A., Silva, J.P., Silva, R., Singh, J.A., Skryabin, V.Y., Skryabina, A.A., Smith, A.E., Soshnikov, S., Spurlock, E.E., Stein, D.J., Sun, J., Tabarés-Seisdedos, R., Thakur, B., Timalsina, B., Tovani-Palone, M.R., Tran, B.X., Tsegaye, G.W., Tahbaz, S.V., Valdez, P.R., Venketasubramanian, N., Vlassov, V., Vu, G.T., Vu, L.G., Wang, Y.P., Wimo, A., Winkler, A.S., Yadav, L., Jabbari, S.H.Y., Yamagishi, K., Yang, L., Yano, Y., Yonemoto, N., Yu, C., Yunusa, I., Zadey, S., Zastrozhin, M.S., Zastrozhina, A., Zhang, Z.J., Murray, C.J.L., Vos, T., 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), e105–e125.

Nichols, E., Szoeke, C.E.I., Vollset, S.E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M.T.E., Akinyemi, R.O., Alahdab, F., Asgedom, S.W., Awasthi, A., Barker-Collo, S.L., Baune, B.T., Béjot, Y., Belachew, A.B., Bennett, D.A., Biadgo, B., Bijani, A., Bin Sayeed, M.S., Brayne, C., Carpenter, D.O., Carvalho, F., Catalá-López, F., Cerin, E., Choi, J.Y.J., Dang, A.K., Degefa, M.G., Djalalinia, S., Dubey, M., Duken, E.E., Edvardsson, D., Endres, M., Eskandarieh, S., Faro, A., Farzadfar, F., Fereshtehnejad, S.M., Fernandes, E., Filip, I., Fischer, F., Gebre, A.K., Geremew, D., Ghasemi-Kasman, M., Gnedovskaya, E. V., Gupta, R., Hachinski, V., Hagos, T.B., Hamidi, S., Hankey, G.J., Haro, J.M., Hay, S.I., Irvani, S.S.N., Jha, R.P., Jonas, J.B., Kalani, R., Karch, A., Kasaeian, A., Khader, Y.S., Khalil, I.A., Khan, E.A., Khanna, T., Khoja, T.A.M., Khubchandani, J., Kisa, A., Kissimova-Skarbek, K., Kivimäki, M., Koyanagi, A., Krohn, K.J., Logroscino, G., Lorkowski, S., Majdan, M., Malekzadeh, R., März, W., Massano, J., Mengistu, G., Meretoja, A., Mohammadi, M., Mohammadi-Khanaposhtani, M., Mokdad, A.H., Mondello, S., Moradi, G., Nagel, G., Naghavi, M., Naik, G., Nguyen, L.H., Nguyen, T.H., Nirayo, Y.L., Nixon, M.R., Ofori-Asenso, R., Ogbo, F.A., Olagunju, A.T., Owolabi, M.O., Panda-Jonas, S., Passos, V.M. d. A., Pereira, D.M., Pinilla-Monsalve, G.D., Piradov, M.A., Pond, C.D., Poustchi, H., Qorbani, M., Radfar, A., Reiner, R.C., Robinson, S.R., Roshandel, G., Rostami, A., Russ, T.C., Sachdev, P.S., Safari, H., Safiri, S., Sahathevan, R., Salimi, Y., Satpathy, M., Sawhney, M., Saylan, M., Sepanlou, S.G., Shafieesabet, A., Shaikh, M.A., Sahraian, M.A., Shigematsu, M., Shiri, R., Shiue, I., Silva, J.P., Smith, M., Sobhani, S., Stein, D.J., Tabarés-Seisdedos, R., Tovani-Palone, M.R., Tran, B.X., Tran, T.T., Tsegay, A.T., Ullah, I., Venketasubramanian, N., Vlassov, V., Wang, Y.P., Weiss, J., Westerman, R., Wijeratne, T., Wyper, G.M.A., Yano, Y., Yimer, E.M., Yonemoto, N., Yousefifard, M., Zaidi, Z., Zare, Z., Vos, T., Feigin, V.L., Murray, C.J.L., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88–106.

Nila, I.S., Villagra Moran, V.M., Khan, Z.A., Hong, Y., 2023. Effect of daily coffee consumption on the risk of Alzheimer’s disease: A systematic review and meta-analysis. Journal of Lifestyle Medicine, 13(2), 83–89.

Oboh, G., Agunloye, O.M., Akinyemi, A.J., Ademiluyi, A.O., Adefegha, S.A., 2013. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochemical Research, 38(2), 413–419.

Olatunji, O.J., Ogundajo, A.L., Oladosu, I.A., Changwichit, K., Ingkaninan, K., Yuenyongsawad, S., Plubrukarn, A., 2014. Non-competitive inhibition of acetylcholinesterase by bromotyrosine alkaloids. Natural Product Communications, 9(11), 1559–1561.

Pohanka, M., 2014. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. International Journal of Molecular Sciences, 15(6), 9809–9825.

Relat, J., Pérez, B., Camps, P., Muñoz-Torrero, D., Badia, A., Victòria Clos, M., 2018. Huprine X attenuates the neurotoxicity induced by kainic acid, especially brain inflammation. Basic and Clinical Pharmacology and Toxicology, 122(1), 94–103.

Remya, C., Dileep, K. V., Tintu, I., Variyar, E.J., Sadasivan, C., 2012. Design of potent inhibitors of acetylcholinesterase using morin as the starting compound. Frontiers in Life Science, 6(3–4), 107–117.

Ren, X., Chen, J.-F., 2020. Caffeine and Parkinson’s disease: multiple benefits and emerging mechanisms. Frontiers in Neuroscience, 14, 602697.

Reshetnikov, D. V., Ivanov, I.D., Baev, D.S., Rybalova, T. V., Mozhaitsev, E.S., Patrushev, S.S., Vavilin, V.A., Tolstikova, T.G., Shults, E.E., 2022. Design, synthesis and assay of novel methylxanthine–alkynylmethylamine derivatives as acetylcholinesterase inhibitors. Molecules, 27(24), 8787.

Ronco, C., Foucault, R., Gillon, E., Bohn, P., Nachon, F., Jean, L., Renard, P.Y., 2011. New huprine derivatives functionalized at position 9 as highly potent acetylcholinesterase inhibitors. ChemMedChem, 6(5), 876–888.

Ruggiero, M., Calvello, R., Porro, C., Messina, G., Cianciulli, A., Panaro, M.A., 2022. Neurodegenerative diseases: can caffeine be a powerful ally to weaken neuroinflammation? International Journal of Molecular Sciences, 23(21), 12958.

Saeed, A., Mahesar, P.A., Zaib, S., Khan, M.S., Matin, A., Shahid, M., Iqbal, J., 2014. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases. European Journal of Medicinal Chemistry, 78(2014), 43–53.

Santos, G.F. Dos, Takahashi, J.A., 2017. A new acetylcholinesterase inhibitor from green glycosylation of trachyloban-19-oic acid by Mucor plumbeus. Anais da Academia Brasileira de Ciencias, 89(3), 1961–1969.

Sinha, S.K., Shrivastava, S.K., 2013. Synthesis, evaluation and molecular dynamics study of some new 4-aminopyridine semicarbazones as an antiamnesic and cognition enhancing agents. Bioorganic and Medicinal Chemistry, 21(17), 5451–5460.

Tira, R., Viola, G., Barracchia, C.G., Parolini, F., Munari, F., Capaldi, S., Assfalg, M., D’Onofrio, M., 2023. Espresso coffee mitigates the aggregation and condensation of Alzheimer′s associated tau protein. Journal of Agricultural and Food Chemistry, 71(30), 11429–11441.

Waskitha, S.S.W., Istyastono, E.P., Riswanto, F.D.O., 2023. Molecular docking study of caffeic acid as acetylcholinesterase inhibitor. Journal of Food and Pharmaceutical Sciences, 11(3), 867–873.

Windah, A.L.L., Istyastono, E.P., 2024. Computational studies of donepezil and acetylcholinesterase molecular dynamics interactions. Jurnal Farmasi Sains dan Komunitas, 21(1), 91–99.

Zhang, X., He, X., Chen, Q., Lu, J., Rapposelli, S., Pi, R., 2018. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorganic and Medicinal Chemistry, 26(3), 543–550.

Ziemianin, A., Ronco, C., Dolé, R., Jean, L., Renard, P.Y., Lange, C.M., 2012. Screening of new huprines-inhibitors of acetylcholinesterases by electrospray ionization ion trap mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 70, 1–5.




DOI: https://doi.org/10.24071/jpsc.009687

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.