Computational Studies of Donepezil and Acetylcholinesterase Dynamics Interactions
(1) Faculty of Pharmacy, Universitas Sanata Dharma
(2) Faculty of Pharmacy, Universitas Sanata Dharma
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Arnittali, M., Rissanou, A. N., & Harmandaris, V., 2019. Structure of biomolecules through molecular dynamics simulations. Procedia Computer Science, 156, 69-78.
Breijyeh, Z., Karaman, R., 2020. Comprehensive review on Alzheimer’s Disease: causes and treatment. Molecules, 25(5789), 1-28.
Cacabelos, R., 2007. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr. Dis. Treat., 3(3), 303-33.
Dou, K.X., Tan, M.S., Tan, C.C., Cao, X.P., Hou, X.H., Guo, Q.H., Tan, L., Mok, V., Yu, J.T., 2018. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res. Ther., 10(126), 1-10.
Dvir, H., Silman, I., Harel, M., Rosenberry, T.L., Sussman, J.L., 2010. Acetylcholinesterase: from 3D structure to function. Chemico-Biological Interactions, 187(1-3), 10-22.
Hata, H., Phuoc Tran, D., Marzouk Sobeh, M., Kitao, A., 2021. Binding free energy of protein/ligand complexes calculated using dissociation parallel cascade selection molecular dynamics and Markov state model. Biophys. Physicobiol., 18, 305-316.
Istyastono, E.P., Riswanto, F.D.O., 2022. Molecular dynamics simulations of the caffeic acid interactions to dipeptidyl peptidase IV. Int. J. App. Pharm., 14(4), 274–278.
Istyastono, E.P., Prasasty, V.D., 2020. Computer-aided discovery of pentapeptide AEYTR as a potent acetylcholinesterase inhibitor. Indones. J. Chem., 21(1), 243-250.
Istyastono, E.P., Radifar, M., Yuniarti, N., Prasasty, V.D., Mungkasi, S., 2020. PyPLIF HIPPOS: a molecular interaction fingerprinting tool for docking results of AutoDock Vina and PLANTS. J. Chem. Info. Model., 60(8), 3697-3702.
Kitphati, W., Wattanakamolkul, K., Lomarat, P., Phanthong, P., Anantachoke, N., Nukoolkarn, V., Thirapanmethee, K., Bunyapraphatsara, N., 2012. Anticholinesterase activity of essential oils and their constituents from Thai medicinal plants in human neuroblastoma SK-N-SH cells, Journal of Asian Association of Schools of Pharmacy, 1(1), 51-61.
Liang, C.S., Li, D.J., Yang, F.C., Tseng, P.T., Carvalho, A.F., Stubbs, B., Thompson, T., Mueller, C., Shin, J. Il, Radua, J., Stewart, R., Rajji, T.K., Tu, Y.K., Chen, T.Y., Yeh, T.C., Tsai, C.K., Yu, C.L., Pan, C.C., Chu, C.S., 2021. Mortality rates in Alzheimer’s disease and non-Alzheimer’s dementias: a systematic review and meta-analysis. Lancet Healthy Longev., 2(8), e479–e488.
Lili, W., Cheng, G., Zhiyong, Z., Qi, Y., Yan, L., Dan, L., Xueli, Z., Yuan, Z., 2013. Steady-state plasma concentration of donepezil enantiomers and its stereoselective metabolism and transport in vitro. Chirality, 25(9), 498–505.
Liu, K., Kokubo, H., 2017. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J. Chem. Info. Model., 57(10), 2514–2522.
Liu, K., Watanabe, E., Kokubo, H., 2017. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput. Aided Mol. Des., 31(2), 201–211.
Lu, J., Wan, L., Zhong, Y., Yu, Q., Han, Y., Chen, P., Wang, B., Li, W., Miao, Y., Guo, C., 2015. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer’s disease. Journal of Pharmacological Sciences, 129(3), 188–195.
Nongonierma, A.B., Mooney, C., Shields, D.C., FitzGerald, R.J., 2014. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides, 57, 43–51.
Istyastono, E.P., 2021. Secangkir Kopi Penemuan Obat Diabetes: Studi Dinamika Molekul, 1st ed. Sanata Dharma University Press, Yogyakarta.
Prasasty, V.D., Istyastono, E.P., 2020. Structure-based design and molecular dynamics simulations of pentapeptide AEYTR as a potential acetylcholinesterase inhibitor. Indones. J. Chem., 20(4), 953-959.
Riswanto, F.D.O., Hariono, M., Yuliani, S.H., Istyastono, E.P., 2017. Computer-aided design of chalcone derivatives as lead compounds targeting acetylcholinesterase. Indones. J. Pharm., 28(2), 100-111.
Weise, C., Kreienkamp, H.J., Raba, R., Pedak, A., Aaviksaar, A., Hucho, F., 1990. Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N,N-dimethyl-2-phenyl-aziridinium. EMBO J., 9(12), 3885–3888.
DOI: https://doi.org/10.24071/jpsc.006967
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)
Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)
Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta
This work is licensed under a Creative Commons Attribution 4.0 International License.