Curcumin Transethosome Gel: Anti-inflammatory Activity Test in Carrageenan-Induced Sprague Dawley Rat

Anisa Amalia, Kriana Efendi, Amelia Novianti

Abstract


Curcumin has anti-inflammatory activities, and is formulated into the transethosome (TE) system to improve penetration. The TE system's stability can be increased by incorporating it into a gel dosage form. This study aims to determine the anti-inflammatory activities of curcumin TE gel. Curcumin TE gel was produced in 3 compositions, each having a curcumin content of 10 mg (F1), 40 mg (F2), or 160 mg (F3). On TE gels, organoleptic, viscosity, pH, particle size, and zeta potential were evaluated. The test animals were divided into five groups for anti-inflammatory activity testing. A 1% carrageenan solution was used to induce edema in the animals, and the volume of edema was measured for comparison with p<0.05set as significant difference. Curcumin TE gel's physical properties showed a yellow and homogenous gel with viscosity values of 31.173 – 33.626 cPs, pH 4.75 – 4.84, particle size 208.3 – 319.4 nm, and zeta potential (-) 40.03 – (-) 51.12 mV. On anti-inflammatory tests, the edema volume in the group given curcumin TE gel decreased in the 270th minute. According to statistical analysis, the test group had a significant difference (p < 0.05) from negative controls and no significant difference (p > 0.05) from positive controls in F1 and F2 anti-inflammatory activity. According to these results, the curcumin TE gel exhibited anti-inflammatory activity equivalent to the positive control, while F3 had anti-inflammatory activity better than the positive control. 


Keywords


Anti-inflammatory; Curcumin; Gel; Physical properties; Transethosome

Full Text:

PDF

References


Abdulbaqi, I.M., Darwis, Y., Khan, N.A.K., Assi, R.A., Khan, A.A., 2016. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. International Journal of Nanomedicine, 11, 2279–2304.

Agoes, G., 2012. Sediaan Farmasi Likuida-Semisolida (SFI-7). ITB, Bandung.

Amalia, A., Srifiana, Y., Anwar, A., 2021. Physical properties and rate of diffusion transethosome curcumin using a combination of tween 60 and span 60 as surfactant. International Journal of Applied Pharmaceutics, 13(Special Issue 3), 66–70.

Andayani, D., Suprihartini, E., Astuti, M., 2018. Efek antiinflamasi ekstrak etanol krokot (Portulaca oleracea, L.) pada udema tikus yang di induksi karagenin. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 3(1), 43.

Anggraeny, E.N., Pramitaningastuti, A.S., 2016. Studi uji daya antiinflamasi dan antipiretik ekstrak etanol daun lengkeng (Dimocarpus longan Lour) pada tikus putih jantan (Rattus norvegicus) galur Wistar. Jurnal Ilmiah Farmasi, 12(2), 1–14.

Aprilianto, E., Harmoni Swantika Yuan, A.V., Pradita, C.D., Hendra, P., 2019. Anti-inflammatory effects of avocado peels against inflammation induced by carrageenan in mice. Pharmaciana, 9(2), 219.

Belma, P., Kenan, Č., Dina, L., Naida, O., Nermina, Ž.S., Selma, Š., Fahir, B., 2021. Curcumin: natural antimicrobial and anti inflammatory agent. Journal of Pharmaceutical Research International, (January), 1–8.

Ben, E.S., T, M.S., Chazraj Chalid, T., Yulianto, T., 2013. Optimasi Nanoemulsi Minyak Kelapa Sawit (Palm Oil) Menggunakan Sukrosa Monoester. Prosiding Seminar Nasional Perkembangan Terkini Sains Farmasi dan Klinik III, 31–62.

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M.R., 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17.

Dwita, L.P., Yati, K., Gantini, S.N., 2019. The anti-inflammatory activity of Nigella sativa balm sticks. Scientia Pharmaceutica, 87(1).

Edityaningrum, C.A., Rachmawati, H., 2015. Peningkatan stabilitas kurkumin melalui pembentukan kompleks kurkumin b-siklodekstrin nanopartikel dalam bentuk gel. Pharmaciana, 5(1), 53–60.

El-Mahdy, M.M., Hassan, A.S., El-Badry, M., Al-Gindy, G.E.-D., 2020. Performance of curcumin in nanosized carriers and as delivery system for topical application. Bulletin of Pharmaceutical Sciences Assiut University, 43(1), 105–122.

Elnaggar, Y.S.R., El-Refaie, W.M., El-Massik, M.A., Abdallah, O.Y., 2014. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. Journal of Controlled Release, 180(1), 10–24.

Esposito, E., Calderan, L., Galvan, A., Cappellozza, E., Drechsler, M., Mariani, P., Pepe, A., Sguizzato, M., Vigato, E., Dalla Pozza, E., Malatesta, M., 2022. Ex vivo evaluation of ethosomes and transethosomes applied on human skin: a comparative study. International Journal of Molecular Sciences, 23(23), 15112.

Gonçalves, G.M.S., Barros, P.P., da Silva, G.H., dos Santos, E.M., Minutti, A.F., 2017. Formulations containing curcumin or trans-resveratrol increase dermal thickness in rats submitted to chemical peeling. Journal of Cosmetics, Dermatological Sciences and Applications, 07(01), 14–26.

Gondkar, S.., Neha, R.P., Saudagar, R.., 2017. Formulation development and characterization of etodolac loaded transethosomes for transdermal delivery. Research Journal of Pharmacy and Technology, 10(9), 3049–3057.

Kharat, M., Du, Z., Zhang, G., Julian, D., 2017. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J. Agric. Food Chem., 65(8), 1525–1532.

Lestari, P.M., Yati, K., Savira, N., 2018. Comparison of carbopol 934 and 941 as thickeners on ketoconazole microemulsions based on physical stability. Pharmaciana, 8(1), 63.

Patel, N.A., Patel, N.J., Patel, R.P., 2009. Formulation and evaluation of curcumin gel for topical application. Pharmaceutical Development and Technology, 14(1), 83–92.

Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., Xu, R., 2021. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Design, Development and Therapy, 15, 4503–4525.

Ramadon, D., Mun’im, A., 2015. Pemanfaatan nanoteknologi dalam sistem penghantaran obat baru untuk produk bahan alam (Utilization of nanotechnology in drug delivery system for natural products). Jurnal Ilmu Kefarmasian Indonesia , 14(2), 118–127.

Rowe, R.C., Sheskey, P.J., Quinn, M.E. (Eds.), 2009. Handbook of Pharmaceutical Excipient, Sixth Edit. ed. Pharmaceutical Press and the American Pharmacists Association.

Santi, T.D., 2015. Uji toksisitas akut dan efek antiinflamasi ekstrak metanol dan ekstrak n-heksana daun pepaya (Carica papaya L). Pharmaceutical Sciences and Research, 2(2), 101–114.

Shaji, J., Bajaj, R., 2018. Transethosomes: a new prospect for enhanced transdermal delivery. International Journal of Pharmaceutical Sciences and Research, 9(7), 2681–2685.

Singh, R., Lillard, J.W., 2009. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215-223..

Srifiana, Y., Amalia, A., Yusnia, 2020. Stabilitas fisik transethosome kurkumin yang menggunakan kombinasi surfaktan tween 60 dan span 60 sebagai surfaktan (Physical stability of curcumin transethosome using combinations tween 60 and span 60 as sulfactant ). Jurnal Ilmu Kefarmasian Indonesia, 18(2), 184–191.

Strambeanu, N., Demetrovici, L., Dragos, D., Lungu, M., 2015. Nanoparticles: Definition, Classification and General Physical Properties, in: Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment. pp. 1–355.

Sweetman, S.C. (Ed.), 2009. Martindale The Complete Drug Reference, 36th Edition, Pharmaceutical Press. pp. 80–81.

Vijayakumar, A., Baskaran, R., Maeng, H.J., Yoo, B.K., 2017. Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier. Archives of Pharmacal Research, 40(7), 864–874.

Vollono, L., Falconi, M., Gaziano, R., Iacovelli, F., Dika, E., Terracciano, C., Bianchi, L., Campione, E., 2019. Potential of curcumin in skin disorders. Nutrients, 11(9), 2169.

Wulandari, A.D., Novianti, A., Andika, M., Amalia, A., 2019. Profil difusi transethosome kurkumin dalam sediaan gel yang menggunakan karbomer 934 sebagai pembentuk gel. Journal of Current Pharmaceutical Science, 3(1), 180–185.

Zubaydah, W.O.S., Wahyuni, W., Sahidin, S., Halik, T.A., Andriani, R., Indalifiany, A., Fristiohady, A., 2019. Anti-inflammatory activity of pharmaceutical gel of ethanolic extract from marine sponge Xestospongia sp. Borneo Journal of Pharmacy, 2(1), 1–9.




DOI: https://doi.org/10.24071/jpsc.005618

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPSC Stats