Physical Properties Investigation on Sunscreens with Red Dragon Fruit Peel Extract

Ruth Febriana Kesuma, Rokiy Alfanaar, Markus Angkawijaya

Abstract


Red dragon fruit peel extract is reported as an active ingredient in sunscreen because of its ability to protect the skin. UV exposure to the skin can cause reddish skin to develop skin cancer. This study aimed to determine the characteristics of the cream made from ZnO and red dragon fruit peel extracts (Hylocereus costaricensis), such as sun protection factor (SPF), pH, stability, viscosity, spreadability, and adhesion. Red dragon fruit peel extract was obtained by maceration using methanol, and DPPH-scavenging activity resulted in an IC50 of 0.96 μg/mL. Measurement of diffuse UV-vis reflectance shows that ZnO has absorption at λex 385 nm, which correlates with a bandgap energy of 3.22 eV. F1 formulation cream (red dragon fruit peel extract and ZnO ratio of 0:1) has the highest SPF value of 17. The Kruskal-Wallis test shows that there is a significant difference in adhesion between the F1 formulation cream with F2 (p-value = 0.002) and F4 (p-value = 0.03).


Keywords


Antioxidant; Red dragon fruit peel; Sunscreens; ZnO

Full Text:

PDF

References


Balakrishnan, K.P., Narayanaswamy, N., 2011. Botanicals as sunscreens: Their role in the prevention of photoaging and skin cancer. Int. J. Cosmet. Sci., 1(1),1–12.

Chen, M. X., Alexander, K. S., Baki, G., 2016. Formulation and Evaluation of Antibacterial Creams and Gels Containing Metal Ions for Topical Application. J. Pharm. (Cairo), 2016:5754349, 1–10.

Dayan, N., 2016. Handbook of Formulating Dermal Applications: A Definitive Practical Guide. John Wiley & Sons, Inc.

Kesuma, R.F., Monica, E., Alfanaar, R., 2020. Physical Properties Investigation on Sunscreens with Colloidal Gold and Moringa oleifera Extract. The Journal of Pure and Applied Chemistry Research, 9(1), 1–7.

Gutiérrez-Hernández, J.M., Escalante, A., Murillo-Vázquez, R.N., Delgado, E., González, F.J., Toríz, G., 2016. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection., J. Photochem. Photobiol. B, 163, 156–161.

Jaiswal, D., Rai, P.K., Mehta, S., Chatterji, S., Shukla, S., Rai, D.K., Sharma, G., Sharma, B., Khair, S., Watal, G., 2013. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med., 6(6), 426–432.

Seon-Pil Jin, S-P., Han, S.B., Kim, Y.K., Park, E.E., Doh, E.J., Kim, K.H., Lee, D.H., Chung, J.H., 2016. Changes in tight junction protein expression in intrinsic aging and photoaging in human skin in vivo. J. Dermatol Sci., 84(1), 99–101.

Kratošová, G., Holišová, V., Konvičková, Z., Ingle, A.P., Gaikwad, S., Škrlová, K., Prokop, A., Rai, M., Plachá, D., 2019. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotecnol. Adv., 37(1),154–176.

Lusignan, P.E.R., 1998. United States Patent [19], U.S. Patent Document, 54–55.

Malsawmtluangi, C., Nath, D.K., Jamatia, I., Lianhimgthangi, Zarzoliana, E, Pachuau, L., 2013. Determination of Sun Protection Factor (SPF) number of some aqueous herbal extracts, J. App Pharm Sci., 3(09), 150–151.

Sabzevari, N., Qiblawi, S., Norton, S.A., Fivenson, D., 2021. Sunscreens: UV filters to protect us: Part 1: Changing regulations and choices for optimal sun protection. International Journal of Women’s Dermatology, 7(1), 28–44.

Serpone, N., Dondi, D., Albini, A., 2007. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta, 360(3), 794–802.

Shin, E.J., Lee, J.S., Hong, S., Lim, T-G., Byun, S., 2019. Quercetin directly targets JAK2 and PKCδ and prevents UV-induced photoaging in human skin. Int. J. Mol. Sci., 20(21), 5262.

Svobodová, A.R., Galandáková, A., Sianská, J., Doležal, D., Lichnovská, R., Ulrichová, J., and Vostálová, 2012. DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch Dermatol Res., 304(5), 407–412.

Wu, L-C., Hsu, H.W., Chen, Y.C., Chiu, C.-C., Lin, Y-I., Ho, J.A., 2006. Food Chemistry Antioxidant and Antiproliferative Activities of Red Pitaya. Food Chemistry, 95, 319–327.

Yang, Y., Wu, R., Sargsyan, D., Yin, R., Kuo, H-C., Yang, I., Wang, L., Cheng, D., Wang, C., Li, S., Hudlikar, R., Lu, Y., Kong, A-N., 2019. UVB drives different stages of epigenome alterations during progression of skin cancer. Cancer Lett., 449, 20–30.




DOI: https://doi.org/10.24071/jpsc.004537

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPSC Stats