Gold Nanoparticles with Natural Ingredients as Anti-Aging: A Systematic Review
(1) Department of Pharmacy, Universitas Islam Indonesia
(2) Department of Pharmacy, Universitas Islam Indonesia
(3) Department of Pharmacy Universitas Islam Indonesia Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Universitas Islam Indonesia
(*) Corresponding Author
Abstract
Aging is a natural process characterized by physiological skin changes. It starts to appear when individuals are in their thirties, making it necessary to use anti-aging products with natural ingredients which are safe even though the penetration is relatively low into the skin. Natural ingredients that can be used are antioxidants that can inhibit aging and can act as bioreductants on gold nanoparticles. Gold nanoparticles can increase penetration into the target cells because of their small size with large surface area. This review article aimed to collect data relating to the development of gold nanoparticles with natural ingredients as anti-aging agents. This review searched through the PubMed and ScienceDirect databases with such keywords as aging, anti-aging, plant extract, antioxidants, and gold nanoparticles. The inclusion criteria were articles in English, available in a full-text version, and published in the last 10 years. Research on the use of natural ingredients as anti-aging agents found that natural ingredients perform better than chemical comparators. Gold nanoparticles are also reported to have been widely used in anti-aging products. Their activity is even better given the low IC50 value and a higher percentage of inhibition compared to those of the extracts without nanoparticle modification. It is reported that gold nanoparticles with natural ingredients as anti-aging agents have a better effect as opposed to purely natural ingredients.
Keywords
Full Text:
PDFReferences
Abdullahi, A., Amini-Nik, S., Jeschke, M. G., 2014. Animal Models in Burn Research. Cellular and Molecular Life Sciences, 71(17): 3241–3255.
Adewale, O.B., Davids, H., Cairncross, L., Roux, S., 2019. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int. J. Toxicol., 38: 357–384.
Alves, G. de A.D., de Souza, R.O., Rogez, H.L.G., Masaki, H., Fonseca, M.J.V., 2019. Cecropia obtusa Extract and Chlorogenic Acid Exhibit Antiaging Effect in Human Fibroblasts and Keratinocytes Cells Exposed to UV Radiation. PLoS ONE, 14(5): e0216501.
Anchelin, M., Alacaraz-Perez, F., Martinez, C.M., Bernabe-Garcia, M., Mulero, V., Cayuela, M.L., 2013. Premature Aging in Telomerase-deficient Zebrafish. Disease Models & Mechanisms, 6(5): 1101–1112.
Armendáriz-Barragán, B., Zafar, N., Badri, W., Galindo-Rodriguez, S.A., Kabbaj, D., Fessi, H., Elaissari, A., 2016. Plant Extracts: From Encapsulation to Application. Expert Opinion on Drug Delivery, 13(8): 1165–1175.
Auburger, G., Klinkenberg, M., Drost, J., Marcus, K., Morales-Gordo, B., Kunz, W.S., Brandt, U., et al., 2012. Primary Skin Fibroblasts as a Model of Parkinson’s Disease. Molecular Neurobiology, 46(1): 20–27.
Auer, T. O., Del Bene, F., 2014. ‘CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish’. Methods, 69(2): 142–150.
Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G., Tan, W., et al., 2012. In Vivo Genome Editing Using a High-Efficiency TALEN System. Nature, 491(7422): 114–118.
Ben, M.B., Gerometta, E., Chawech, R., Sorres, J., Bialecki, A., Pesnel, S., Spadavecchia, J., et al., 2020. Assessment of Antioxidant and Dermoprotective Activities of Gold Nanoparticles as Safe Cosmetic Ingredient. Colloids and Surfaces B: Biointerfaces, 189: 110855.
Cakmakci, S., Topdaş, E.F., Kalın, P., Han, H., Şekerci, P., Polat, K.L., Gulcin, I., 2015. Antioxidant Capacity and Functionality of Oleaster (Elaeagnus angustifolia L.) Flour and Crust in a New Kind of Fruity Ice cream. Int. J. Food Sci. Technol., 50(2): 472–481.
Cakmakci, S., Oz, E., Çakıroğlu, K., Polat, A., Gülçin, İ., Ilgaz, Ş., Cheraghi, K.S., Ozhamamcı, İ., 2019. Probiotic Shelf Life, Antioxidant, Sensory, Physical and Chemical Properties of Yogurts Produced with Lactobacillus acidophilus and Green Tea Powder. Kafkas Univ Veteriner Fakültesi Dergisi 25(5): 673–682.
Castellan, C.S., Pereira, P.N.R., Viana, G., Chen, S-H., Paulli, G.F., Bedran-Russo, A.K., 2010. Solubility study of phytochemical cross-linking agents on dentin stiffness. Journal of Dentistry, 38(5): 431–436.
Chaiyana, W., Chansakaow, S., Intasai, N., Kiattisin, K., Lee, K.H., Lin, W.C., Lue, S.C., et al., 2020. Chemical Constituents, Antioxidant, Anti-MMPs, and Anti-Hyaluronidase Activities of Thunbergia laurifolia Lindl. Leaf Extracts for Skin Aging and Skin Damage Prevention. Molecules, 25(8): 1923.
Cho, W.K., Kim, H.I., Kim, S.Y., Seo, H.H., Song, J., Kim, J., Shin, D.S., et al., 2020. Anti-Aging Effects of Leontopodium alpinum (Edelweiss) Callus Culture Extract through Transcriptome Profiling. Genes, 11(2): 230.
Choi, H.J., Alam, M.B., Baek, M.E., Kwon, Y. G., Lim, J.Y., Lee, S.H., 2020. Protection Against UVB-Induced Photoaging by Nypa fruticans via Inhibition of MAPK/AP-1/MMP-1 Signaling. Oxidative Medicine and Cellular Longevity, 2020: 1–14.
Choi, S.H., Choi, S. I., Jung, T. D., Cho, B.Y., Lee, J. H., Kim, S.H., Yoon, S. A., et al., 2017. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin. International Journal of Molecular Sciences, 18(10): 2052.
Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., Wyatt, M.D., 2005. Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small, 1(3): 325–327.
Das, P., Barua, S., Sarkar, S., Karak, N., Bhattacharyya, P., Raza, N., Kim, K.H., et al., 2018. Plant Extract–mediated Green Silver Nanoparticles: Efficacy as Soil Conditioner and Plant Growth Promoter. Journal of Hazardous Materials, 346: 62–72.
Decean, H., Fischer-Fodor, E., Tatomir, C., Perde-Schrepler, M., Somfelean, L., Burz, C., et al., 2016. Vitis vinifera seeds extract for the modulation of cytosolic factors Bax-a and NF-kB involved in UVB-induced Oxidative Stress and Apoptosis of Human Skin Cells. Clujul. Med., 89: 72.
Eruygur, N., Ataş, M., Tekin, M., Taslimi, P., Koçyiğit, U.M., Gulçin, İ., 2019. In Vitro Antioxidant, Antimicrobial, Anticholinesterase and Anti-diabetic Activities of Turkish Endemic Achillea cucullate (Asteraceae) from Ethanol Extract. S. Afric. J. Bot., 120:141–145.
Fan, J., Cheng, Y., Sun, M., 2020. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chem. Rec. 20: 1474–1504.
Filipe, P., Silva, J.N., Silva, R., Cirne de Castro, J.L., Marques Gomes, M., Alves, L.C., Santus, R., et al. 2009. Stratum Corneum Is an Effective Barrier to TiO 2 and ZnO Nanoparticle Percutaneous Absorption. Skin Pharmacology and Physiology, 22(5): 266–275.
Fisher, G.J., Varani, J., Voorhees, J.J., 2008. Looking Older: Fibroblast Collapse and Therapeutic Implications. Archives of Dermatology, 144(5): 666-672.
Fisher, G.J., Quan, T., Purohit, T., Shao, Y., Cho, M. K., He, T., Varani, J., et al., 2009. Collagen Fragmentation Promotes Oxidative Stress and Elevates Matrix Metalloproteinase-1 in Fibroblasts in Aged Human Skin. The American Journal of Pathology, 174(1): 101–114.
Fisher, G. J., Shao, Y., He, T., Qin, Z., Perry, D., Voorhees, J.J., et al., 2016. Reduction of Fibroblast Size/Mechanical Force Down‐regulates TGF ‐β Type II Receptor: Implications for Human Skin Aging. Aging Cell, 15(1): 67–76.
Foote, A.G., Wang, Z., Kendziorski, C., Thibeault, S. L., et al., 2019. Tissue Specific Human Fibroblast Differential Expression Based on RNA Sequencing Analysis. BMC Genomics, 20(1): 308.
Gabbott, C.M., Sun, T., 2018. Comparison of Human Dermal Fibroblasts and HaCat Cells Cultured in Medium with or without Serum via a Generic Tissue Engineering Research Platform. International Journal of Molecular Sciences, 19(2): 388.
Gao, W., Lin, P., Hwang, E., Wang, Y., Yan, Z., Ngo, H.T.T., Yi, T.H.L., et al., 2018. Pterocarpus santalinus L. Regulated Ultraviolet B Irradiation-induced Procollagen Reduction and Matrix Metalloproteinases Expression Through Activation of TGF- β /Smad and Inhibition of the MAPK/AP-1 Pathway in Normal Human Dermal Fibroblasts. Photochemistry and Photobiology, 94(1): 139–149.
Gao, W., Wang, Y.S., Hwang, E., Lin, P., Bae, J., Seo, S.A., Yan, Z., et al., 2018. Rubus idaeus L. (red raspberry) Blocks UVB-induced MMP Production and Promotes Type I Procollagen Synthesis via Inhibition of MAPK/AP-1, NF-κβ and Stimulation of TGF-β/Smad, Nrf2 in Normal Human Dermal Fibroblasts. Journal of Photochemistry and Photobiology. B, Biology, 185: 241–253.
Gao, W., Wang, Y. S., Qu, Z. Y., Hwang, E., Ngo, H. T. T., Wang, Y.P., Bae, J., et al., 2018. Orobanche cernua Loefling Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 94(4): 733–743.
Gerber, P.A., Buhren, B.A., Schrumpf, H., Homey, B., Zlotnik, A., Hevezi, P., et al., 2014. The Top Skin-associated Genes: A Comparative Analysis of Human and Mouse Skin Transcriptomes. Biological Chemistry, 395(6): 577–591.
Gilbert, M.J.H., Zerulla, T.C., Tierney, K.B., 2014. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age, Experimental Gerontology, 50: 106–113.
Gliga, A.R., Skoglund, S., Wallinder, I.O., Fadeel, B., Karlsson, H.L., et al., 2014. Size-dependent Cytotoxicity of Silver Nanoparticles in Human Lung Cells: The Role of Cellular Uptake, Agglomeration and Ag Release. Particle and Fibre Toxicology, 11(1): 11.
Gocer H, Akıncıoğlu A, Oztaşkın N, Göksu S, Gulcin I., 2013. Synthesis, Antioxidant and Antiacetylcholinesterase Activities of Sulfonamide Derivatives of Dopamine Related Compounds. Arch. Pharm. 346(11): 783–792
Gulcin I., 2002. Determination of antioxidant activity, characteriza- tion of oxidative enzymes and investigation of some in vivo properties of nettle (Urtica dioica). PhD Thesis, Ataturk University, p12.
Gulcin I, Beydemir Ş, Şat İG, Küfrevioğlu Öİ., 2005. Evaluation of Antioxidant Activity of Cornelian Cherry (Cornus mas L.). Acta Aliment. Hung. 34: 193–202.
Gulcin, İ., 2020. Antioxidants and Antioxidant Methods: An Updated Overview. Archives of Toxicology, 94(3): 651–715.
Hänzelmann, S., Beier, F., Gusmao, E. G., Koch, C. M., Hummel, S., Charapitsa, I., Joussen, S., et al., 2015. Replicative Senescence is Associated with Nuclear Reorganization and with DNA Methylation at Specific Transcription Factor Binding Sites. Clinical Epigenetics, 7(1): 19.
Heo, H., Lee, H., Yang, J., Sung, J., Kim, Y., Jeong, H. S., Lee, J., 2021. Protective Activity and Underlying Mechanism of Ginseng Seeds against UVB-Induced Damage in Human Fibroblasts. Antioxidants, 10(3): 403.
Huang, P., Xu, L., Liang, W., Tam, C. I., Zhang, Y., Qi, F., Zhu, Z., et al., 2013. Genomic Deletion Induced by Tol2 Transposon Excision in Zebrafish. Nucleic Acids Research, 41(2): e36.
Hwang, E., Gao, W., 2019. Helianthus annuus L. Flower Prevents UVB‐induced Photodamage in Human Dermal Fibroblasts by Regulating the MAPK/AP‐1, NFAT, and Nrf2 Signaling Pathways. J. Cell. Biochem., 120(1): 601-612.
Hwang, E., Ngo, H.T.T., Seo, S.A., Park, B., Zhang, M., Yi, T.H., 2018. Protective Effect of Dietary Alchemilla mollis on UVB-irradiated Premature Skin Aging Through Regulation of Transcription Factor NFATc1 and Nrf2/ARE Pathways. Phytomedicine: international journal of phytotherapy and phytopharmacology, 39: 125–136.
Iavicoli, I., Leso, V., Bergamaschi, A., 2012. Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of In Vivo Studies. Journal of Nanomaterials, 2012: 1–36.
Iswarya, V., Bhuvaneshwari, M., Chandrasekaran, N., Mukherjee, A., 2016. Individual and Binary Toxicity of Anatase and Rutile Nanoparticles Towards Ceriodaphnia dubia. Aquatic Toxicology, 178: 209–221.
Jha, A.K., Prasad, K., Kumar, V., Prasad, K., 2009. Biosynthesis of Silver Nanoparticles Using Eclipta Leaf. Biotechnology Progress, 25(5): 1476–1479.
Jiang, X., Weise, S., Hafner, M., Röcker, C., Zhang, F., Parak, W.J., Nienhaus, G.U., 2010. Quantitative Analysis of the Protein Corona on FePt Nanoparticles Formed By Transferrin Binding. Journal of The Royal Society Interface, 7(suppl_1): S5-S13.
Jiménez Pérez, Z. E., Mathiyalagan, R., Markus, J., Kim, Y.J., Kang, H.M., Abbai, R., Seo, K.H., et al., 2017. Ginseng-berry-mediated Gold and Silver Nanoparticle Synthesis and Evaluation of Their In Vitro Antioxidant, Antimicrobial, and Cytotoxicity Effects on Human Dermal Fibroblast and Murine Melanoma Skin Cell Lines. International Journal of Nanomedicine, 12: 709–723.
Jun, E.S., Kim, Y.J., Kim, H.H., Park, S. Y., 2020. Gold Nanoparticles Using Ecklonia stolonifera Protect Human Dermal Fibroblasts from UVA-Induced Senescence through Inhibiting MMP-1 and MMP-3. Marine Drugs, 18(9): 433.
Kammeyer, A., Luiten, R.M., 2015. Oxidation Events and Skin Aging. Ageing Research Reviews, 21: 16–29.
Kawakami, K., 2007. Tol2: A Versatile Gene Transfer Vector in Vertebrates. Genome Biology, 8(Suppl1): S7.
Keller, E.T., Murtha, J.M., 2004. The Use of Mature Zebrafish (Danio rerio) as a Model for Human Aging and Disease. Comparative Biochemistry and Physiology Part C: Toxicoloy and Pharmacology, 138(3): 335–341.
Khan, I., Saeed, K., Khan, I., 2019. Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry, 12(7): 908–931.
Khare, R., Upmanyu, N., Jha, M., 2019. Exploring the Potential Effect of Methanolic Extract of Salvia officinalis Against UV Exposed Skin Aging: In Vivo and In Vitro Model. Current Aging Science, 2019: 12.
Kim, H., 2016. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes. Nutrients, 8(8): 464.
Kim, H. S., Seo, Y. S., Kim, K., Han, J. W., Park, Y., Cho, S., 2016. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism. Nanoscale Research Letters, 11(1): 230.
Kishi, S., 2004. Functional Aging and Gradual Senescence in Zebrafish, Annals of the New York Academy of Sciences, 1019(1): 521–526.
Kishi, S., Uchiyama, J., Baughman, A. M., Goto, T., Lin, M.C., Tsai, S.B., 2003. The Zebrafish as a Vertebrate Model of Functional Aging and Very Gradual Senescence. Experimental Gerontology, 38(7): 777–786.
Kishi, S., Bayliss, P. E., Uchiyama, J., Koshimizu, E., Qi, J., Nanjappa, P., Imamura, S., et al., 2008. The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers. PLoS Genetics., 4(8): e1000152.
Koohgoli, R., Hudson, L., Naidoo, K., Wilkinson, S., Chavan, B., Birch-Machin, M.A., 2017. Bad Air Gets Under Your Skin. Exp. Dermatol., 26: 384–387.
Koshimizu, E., Imamura, S., Qi, J., Toure, J., Valdez Jr, D. M., Carr, C.E., Hanai, J., et al. 2011. Embryonic Senescence and Laminopathies in a Progeroid Zebrafish Model. PLoS ONE. Edited by A. Lewin, 6(3): e17688.
Kuda, T., Eda, M., Kataoka, M., Nemoto, M., Kawahara, M., Oshio, S., Takahashi, H., et al., 2016. Anti-glycation Properties of the Aqueous Extract Solutions of Dried Algae Products and Effect of Lactic Acid Fermentation on the Properties. Food Chemistry, 192: 1109-1115.
Kumar, A., Boruah, B.M., Liang, X.-J., 2011. Gold Nanoparticles: Promising Nanomaterials for the Diagnosis of Cancer and HIV/AIDS. Journal of Nanomaterials, 2011: 1–17.
Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B. D., Hardy, M.E., Campbell, D.S., Parant, J. M., et al., 2007. The Tol2kit: A Multisite Gateway-based Construction Kit for Tol2 Transposon Transgenesis Constructs. Developmental Dynamics, 236(11), 3088–3099.
Lee, H., Sung, J., Kim, Y., Jeong, H.S., Lee, J., 2019. Protective Effects of Unsaponifiable Matter from Perilla Seed Meal on UVB-induced Damages and the Underlying Mechanisms in Human Skin Fibroblasts. Antioxidants, 8(12), 644.
Li, J., Lu, Y.R., Lin, I.F., Kang, W., Chen, H. B., Lu, H. F., Wang, H. D., 2020. Reversing UVB‐induced Photoaging with Hibiscus sabdariffa calyx Aqueous Extract. Journal of the Science of Food and Agriculture, 100(2): 672–681.
Li, Q., Uitto, J., 2014. Zebrafish as a Model System to Study Skin Biology and Pathology. Journal of Investigative Dermatology, 134(6): 1–6.
Li, X., Hu, Z., Ma, J., Wang, X., Zhang, Y., Wang, W., Yuan, Z., 2018. The Systematic Evaluation of Size-dependent Toxicity and Multi-time Biodistribution of Gold Nanoparticles. Colloids and Surfaces B: Biointerfaces, 167: 260–266.
Liang, S.T., Audira, G., Juniardi, S., Chen, J.R., Lai, Y.H., Du, Z.C., Lin, D. S., et al., 2019. Zebrafish Carrying pycr1 Gene Deficiency Display Aging and Multiple Behavioral Abnormalities. Cells, 8(5): 453.
Limtrakul, P., Yodkeeree, S., Thippraphan, P., Punfa, W., Srisomboon, J., 2016. Anti-aging and Tyrosinase Inhibition Effects of Cassia fistula Flower Butanolic Extract. BMC Complementary and Alternative Medicine, 16(1): 497.
Lin, P., Hwang, E., Ngo, H. T. T., Seo, S. A., Yi, T. H.., 2019. Sambucus nigra L. Ameliorates UVB-induced Photoaging and Inflammatory Response in Human Skin Keratinocytes. Cytotechnology, 71(5): 1003–1017.
Liu, D.C., Raphael, A.P., Sundh, D., Grice, J.E., Soyer, H.P., Roberts, M.S., Prow, T.W., 2012. The Human Stratum Corneum Prevents Small Gold Nanoparticle Penetration and Their Potential Toxic Metabolic Consequences. Journal of Nanomaterials, 2012: 1–8.
Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., Sanchez-Gonzalez, C., 2018. Gold nanoparticles: Distribution, Bioaccumulation and Toxicity. In vitro and In Vivo Studies. Nanomedicine: Nanotechnology, Biology and Medicine, 14(1): 1–12.
Lourith, N., Kanlayavattanakul, M., Chaikul, P., Chansriniyom, C., Bunwatcharaphansakun, P., 2017. In vitro and cellular activities of the selected fruits residues for skin aging treatment. Anais da Academia Brasileira de Ciências, 89(1 suppl 0): 577–589.
Malik, P., Shankar, R., Malik, V., Sharma, N., Mukherjee, T.K., 2014. Green Chemistry Based Benign Routes for Nanoparticle Synthesis. Journal of Nanoparticles, 2014: 1–14.
Manosroi, A., Kumguan, K., Chankhampan, C., Manosroi, W., Manosroi, J., 2012. Nanoscale Gelatinase A (MMP-2) Inhibition on Human Skin Fibroblasts of Longkong (Lansium domesticum Correa) Leaf Extracts for Anti-Aging. Journal of Nanoscience and Nanotechnology, 12(9): 7187–7197.
Martins, R.R., McCracken, A.W., Simons, M.J.P., Henriques, C.M., Rera, 2018. How to Catch a Smurf? – Ageing and Beyond…In Vivo Assessment of Intestinal Permeability in Multiple Model Organisms, BIO-PROTOCOL, 8(3): e2722.
Mitani, H., Kamei, Y., Fukamachi, S., Oda, S., Sasaki, T., Asakawa, S., Todo, T., et al., 2006. The Medaka Genome: Why We Need Multiple Fish Models in Vertebrate Functional Genomics. Genome Dynamics, 2: 165–182.
Morabito, K., Shapley, N.C., Steeley, K.G., Tripathi, A., 2011. Review of Sunscreen and the Emergence of Non-conventional Absorbers and Their Applications in Ultraviolet Protection. International Journal of Cosmetic Science, 33(5): 385–390.
Nafisi, S., Maibach, H.I., 2018. Skin penetration of nanoparticles, in Emerging Nanotechnologies in Immunology. Elsevier, pp. 47–88.
Nowak, A., Cybulska, K., Makuch, E., Kucharski, Ł., Różewicka-Czabańska, M., Prowans, P., Czapla, N., et al., 2021. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.). Molecules, 26(2): 329.
OECD. 2019. Test No. 432: In Vitro 3T3 NRU Phototoxicity Test. OECD (OECD Guidelines for the Testing of Chemicals, Section 4).
Onaciu, A., Braicu, C., Zimta, A.A., Moldovan, A., Stiufiuc, R., Buse, M., Ciocan, C., et al., 2019. Gold Nanorods: From Anisotropy to Opportunity. An Evolution Update. Nanomedicine, 14(9): 1203–1226.
Onyango, I.G., Dennis, J., Khan, S.M., 2016. Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics Based Therapies. Ageing and Disease, 7(2): 201-214.
Öztaşkın, N., Kaya, R., Maraş, A., Şahin, E., Gülcin, İ., Göksu, S., 2019. Synthesis and Characterization of Novel Bromophenols: Determination of their Anticholinergic, Antidiabetic and Antioxidant Activities. Bioorg. Chem., 87: 91–102.
Park, B., Hwang, E., Seo, S.A., Cho, J.G., Yang, J.E., Yi, T.H., 2018. Eucalyptus globulus Extract Protects Against UVB-induced Photoaging by Enhancing Collagen Synthesis via Regulation of TGF-β/Smad Signals and Attenuation of AP-1. Archives of Biochemistry and Biophysics, 637: 31–39.
Qin, Z., Balimunkwe, R.M., Quan, T., 2017. Age‐related Reduction of Dermal Fibroblast Size Upregulates Multiple Matrix Metalloproteinases as Observed in Aged Human Skin In Vivo. British Journal of Dermatology, 177(5): 1337–1348.
Quan, T., Little, E., Quan, H., Qin, Z., Voorhees, J.J., Fisher, G.J., 2013. Elevated Matrix Metalloproteinases and Collagen Fragmentation in Photodamaged Human Skin: Impact of Altered Extracellular Matrix Microenvironment on Dermal Fibroblast Function. Journal of Investigative Dermatology, 133(5): 1362–1366.
Raju, G., Katiyar, N., Vadukumpully, S., Shankarappa, S. A., 2018. Penetration of Gold Nanoparticles Across the Stratum Corneum Layer of Thick-Skin. Journal of Dermatological Science, 89(2): 146–154.
Rittie, L., Fisher, G.J., 2015. Natural and Sun-Induced Aging of Human Skin. Cold Spring Harbor Perspectives in Medicine, 5: a015370–a015370.
Roginsky V, Lissi EA., 2005. Review of Methods to Determine Chain-breaking Antioxidant Activity in Food. Food Chem., 92: 235–254.
Sanches Silveira, J.E.P., Myaki Pedroso, D.M., 2014. UV Light and Skin Aging. Reviews on
Environmental Health, 29:243-254.
Seo, S. A., Park, B., Hwang, E., Park, S.Y., Yi, T.H., 2018. Borago officinalis L. Attenuates UVB-induced Skin Photodamage via Regulation of AP-1 and Nrf2/ARE Pathway in Normal Human Dermal Fibroblasts and Promotion of Collagen Synthesis in Hairless Mice. Experimental Gerontology, 107: 178–186.
Shahidi F, Ambigaipalan P., 2015. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects: A Review. J. Funct. Foods, 18: 820–897.
Sharma, V.K., Sayes, C.M., Guo, B., Pillai, S.D., Parsons, J., Wang, C., Yan, B., Ma, X., 2019. Interactions Between Silver Nanoparticles and Other Metal Nanoparticles Under Environmentally Relevant Conditions: A Review. Science of the Total Environment, 653: 1042–1051.
Shavandi, A., Bekhit, A.E.A., Saeedi, P., Izadifar, Z., Bekhit, A.A., Khademhosseini, A., 2018. Polyphenol Uses in Biomaterials Engineering. Biomaterials, 167: 91–106.
Shin, J.W., Kwon, S.H., Choi, J.Y., Na, J.I., Huh, C.H., Choi, H.R., Park, K.C., 2019. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. International Journal of Molecular Sciences, 20(9): 2126.
Shin, K.K., Yi, Y.S., Kim, J.K., Kim, H., Hossain, M. A., Kim, J.H., Cho, J.Y., 2020. Korean Red Ginseng Plays an Anti-Aging Role by Modulating Expression of Aging-Related Genes and Immune Cell Subsets. Molecules, 25(7): 1492.
Shin, S., Cho, S.H., Park, D., Jung, E., 2020. Anti‐skin Aging Properties of Protocatechuic Acid In Vitro and In Vivo. Journal of Cosmetic Dermatology, 19(4): 977–984.
Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., Dhaka, N., 2013. Potential Applications of Antioxidants: A Review. J. Pharm. Res., 7(9):828–835.
Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P., 2018. “Green” Synthesis of Metals and their Oxide Nanoparticles: Applications for Environmental Remediation. Journal of Nanobiotechnology, 16(1): 84.
Singh, P.K., Kumar, P., Das, A.K., 2019. Unconventional Physical Methods for Synthesis of Metal and Non-metal Nanoparticles: A Review, in: Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, p. 199–221.
Slepička, P., Slepičková Kasálková, N., Siegel, J., Kolská, Z., Švorčík, V., 2019. Methods of Gold and Silver Nanoparticles Preparation. Materials, 13(1): 1.
Song, E., Chung, H., Shim, E., Jeong, J.K., Han, B.K., Choi, H.J., Hwang, J., 2016. Gastrodia elata Blume Extract Modulates Antioxidant Activity and Ultraviolet A-Irradiated Skin Aging in Human Dermal Fibroblast Cells. Journal of Medicinal Food, 19(11): 1057–1064.
Stojiljković, D., Pavlović, D., Arsić, I., 2014. Oxidative Stress, Skin Aging and Antioxidant Therapy / Oksidacioni Stres. Starenje Kože I Antioksidaciona Terapija, Acta Facultatis Medicae Naissensis, 31(4): 207–217.
Takeda, H., 2008. Draft Genome of the Medaka Fish: A Comprehensive Resource for Medaka Developmental Genetics and Vertebrate Evolutionary Biology. Development, Growth & Differentiation, 50 (Suppl 1): S157–S166.
Taylor, J.S., de Peer, Y.V., Braasch, I., Meyer, A., 2001. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1414): 1661–1679.
Tobin, D.J., 2017. Introduction to Skin Aging. Journal of Tissue Viability, 26: 37–46.
Tuominen, A., 2013. Defensive Strategies in Geranium sylvaticum, Part 2: Roles of Water-soluble Tannins, Flavonoids and Phenolic Acids Against Natural Enemies. Phytochemistry, 95: 408-20.
Vangipuram, M., Ting, D., Kim, S., Diaz, R., Schüle, B., 2013. Skin Punch Biopsy Explant Culture for Derivation of Primary Human Fibroblasts. Journal of Visualized Experiments, (77): e3779.
Varani, J., Dame, M.K., Rittie, L., Fligiel, S.E., Kang, S., Fisher, G.J., Voorhees, J.J., 2006. Decreased Collagen Production in Chronologically Aged Skin. The American Journal of Pathology, 168(6): 1861–1868.
Velmurugan, P., Singam, E.R., Jonnalagadda, R.R., Subramanian, V., 2014. Investigation on interaction of tannic acid with type I collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications: Investigation on Interaction of Tannic Acid with Collagen. Biopolymers, 101(5): 471–483.
Verma, H.N., Singh, P., Chavan, R.M., 2014. Gold Nanoparticle: Synthesis and Characterization. Vet. World, 7: 72–77.
Wang, L., Jayawardena, T.U., Yang, H., Lee, H., Jeon, Y., 2020. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants, 9(8): 724.
Wilson, V.G., 2013. Growth and Differentiation of HaCaT Keratinocytes, in Turksen, K. (ed.) Epidermal Cells. New York, Springer New York (Methods in Molecular Biology), pp. 33–41.
Wong, V.W., Sorkin, M., Glotzbach, J.P., Longaker, M.T., Gurtner, G.C., 2011. Surgical Approaches to Create Murine Models of Human Wound Healing. Journal of Biomedicine and Biotechnology, 2011: 1–8.
Woźniak, A., Malankowska, A., Nowaczyk, G., Grześkowiak, B.F., Tuśnio, K., Słomski, R., Zaleska-Medynska, A., et al., 2017. Size and Shape-dependent Cytotoxicity Profile of Gold Nanoparticles for Biomedical Applications. Journal of Materials Science. Materials in Medicine, 28(6): 92.
Wu, L., Shao, H., Fang, Z., Zhao, Y., Cao, C.Y., Li, Q., 2019. Mechanism and Effects of Polyphenol Derivatives for Modifying Collagen. ACS Biomater. Sci. Eng., 5(9): 4272–4284.
Yaqoob, S.B., Adnan, R., Rameez Khan, R.M., Rashid, M., 2020. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Frontiers in Chemistry, 8: 376.
Yeh, Y.-C., Creran, B., Rotello, V.M., 2012. Gold nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale, 4: 1871–1880.
Zhang, M., Hwang, E., Lin, P., Gao, W., Ngo, H.T.T., Yi, T.H., 2018. Prunella vulgaris L. Exerts a Protective Effect Against Extrinsic Aging Through NF-κB, MAPKs, AP-1, and TGF-β/Smad Signaling Pathways in UVB-Aged Normal Human Dermal Fibroblasts. Rejuvenation Research, 21(4): 313–322.
Zhao, P., Alam, M., Lee, S.H., 2018. Protection of UVB-Induced Photoaging by Fuzhuan-Brick Tea Aqueous Extract via MAPKs/Nrf2-Mediated Down-regulation of MMP-1. Nutrients, 11(1): 60.
Zomer, H. D., Trentin, A.G., 2018. Skin Wound Healing in Humans and Mice: Challenges in Translational Research. Journal of Dermatological Science, 90(1): 3-12.
Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., et al., 2013. TALEN-mediated Precise Genome Modification by Homologous Recombination in Zebrafish. Nature Methods, 10(4): 329–331.
DOI: https://doi.org/10.24071/jpsc.004374
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)
Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)
Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta
This work is licensed under a Creative Commons Attribution 4.0 International License.