The Epigenetic Impact of Vegetables-Derived Dietary Compounds in Neurodegenerative Conditions : A Review

Vania Amanda Samor, Yurida Ni'ma Annisa, Muthi Ikawati, Nunung Yuniarti

Abstract


Dietary compounds from the foods we eat on a daily basis offer several benefits; they help prevent disease and preserve health. The epigenetic advantages of the vegetables we eat every day are one of the benefits that have not been well-reported. Epigenetic pathways involving histone modification, DNA methylation, and alterations caused by miRNAs are extensively engaged in signal transmission, cell development, and death in various disease states, including brain cells. Through this narrative review collected from multiple studies available on reputable online databases until March 2022 shows the epigenetic advantages of various vegetables' content such as gallic acid, quercetin, kaempferol, apigenin, luteolin, resveratrol, genistein, sulforaphane, and diallyl disulfide in neurodegenerative conditions are summarized. However, in-depth investigations are still required to clarify these epigenetic mechanisms before these compounds are ready to be used in the future, as several studies still provide contradictory results

Keywords


Dietary compounds, epigenetic modification, neurodegenerative, vegetables

Full Text:

PDF

References


Aggarwal, A., Sharma, N., Khera, A., Sandhir, R., Rishi, V., 2020. Quercetin alleviates cognitive decline in ovariectomized mice by potentially modulating histone acetylation homeostasis. The Journal of Nutritional Biochemistry, 84, 108439.

Arunkumar, A., Vijayababu, M.R., Srinivasan, N., Aruldhas, M.M., Arunakaran, J., 2006. Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3. Molecular and Cellular Biochemistry, 288(1–2), 107–113.

Bai, Y., Cui, W., Xin, Y., Miao, X., Barati, M.T., Zhang, C., Chen, Q., Tan, Y., Cui, T., Zheng, Y., Cai, L., 2013. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. Journal of Molecular and Cellular Cardiology, 57, 82–95.

Berger, A., Venturelli, S., Kallnischkies, M., Böcker, A., Busch, C., Weiland, T., Noor, S., Leischner, C., Weiss, T.S., Lauer, U.M., Bischoff, S.C., Bitzer, M., 2013. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. The Journal of Nutritional Biochemistry, 24(6), 977–985.

Carlos-Reyes, Á., López-González, J.S., Meneses-Flores, M., Gallardo-Rincón, D., Ruíz-García, E., Marchat, L.A., Astudillo-de la Vega, H., Hernández de la Cruz, O.N., López-Camarillo, C., 2019. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Frontiers in Genetics, 10, 1–14.

Choi, S.-W., Friso, S., 2010. Epigenetics: A New Bridge between Nutrition and Health. Advances in Nutrition (Bethesda, Md.), 1(1), 8–16.

Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P.R., Steinbusch, H.W.M., Coleman, P.D., Rutten, B.P.F., van den Hove, D.L.A., 2013. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiology of Aging, 34(9), 2091–2099.

Cosín-Tomàs, M., Senserrich, J., Arumí-Planas, M., Alquézar, C., Pallàs, M., Martín-Requero, Á., Suñol, C., Kaliman, P., Sanfeliu, C., 2019. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer’s Disease Patients. Nutrients, 11(8), 1–23.

de Ruijter, A.J.M., van Gennip, A.H., Caron, H.N., Kemp, S., van Kuilenburg, A.B.P., 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. The Biochemical Journal, 370(Pt 3), 737–749.

Desplats, P., Spencer, B., Coffee, E., Patel, P., Michael, S., Patrick, C., Adame, A., Rockenstein, E., Masliah, E., 2011. α-Synuclein Sequesters Dnmt1 from the Nucleus. Journal of Biological Chemistry, 286(11), 9031–9037.

Di Gioia, F., Pinela, J., de Haro Bailón, A., Fereira, I.C.F.R., Petropoulos, S.A., 2020. Chapter 1 - The dilemma of “good” and “bad” glucosinolates and the potential to regulate their content, in: Galanakis, C.M. (Ed.), Glucosinolates: Properties, Recovery, and Applications. Academic Press, pp. 1–45.

Dinkova-Kostova, A.T., Kostov, R.V., 2012. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337–347.

Dikmen, M., 2017. Comparison of the Effects of Curcumin and RG108 on NGF-Induced PC-12 Adh Cell Differentiation and Neurite Outgrowth. Journal of Medicinal Food, 20(4), 376–384.

Dorrigiv, M., Zareiyan, A., Hosseinzadeh, H., 2020. Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: A comprehensive update review. Phytotherapy Research, 34(8), 1770–1797.

Geekiyanage, H., Chan, C., 2011. Micro RNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β novel targets in sporadic Alzheimer’s disease. Journal of Neuroscience, 31(41), 14820–14830.

Gonzalez-Zuñiga, M., Contreras, P.S., Estrada, L.D., Chamorro, D., Villagra, A., Zanlungo, S., Seto, E., Alvarez, A.R., 2014. c-Abl Stabilizes HDAC2 Levels by Tyrosine Phosphorylation Repressing Neuronal Gene Expression in Alzheimer’s Disease. Molecular Cell, 56(1), 163–173.

Harnly, J.M., Doherty, R.F., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Bhagwat, S., Gebhardt, S., 2006. Flavonoid Content of U.S. Fruits, Vegetables, and Nuts. Journal of Agricultural and Food Chemistry, 54(26), 9966–9977.

Hirohata, M., Ono, K., Takasaki, J., Takahashi, R., Ikeda, T., Morinaga, A., Yamada, M., 2012. Anti-amyloidogenic effects of soybean isoflavones in vitro: Fluorescence spectroscopy demonstrating direct binding to Aβ monomers, oligomers and fibrils. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(8), 1316–1324.

Hong, S.-Y., Jeong, W.-S., Jun, M., 2012. Protective Effects of the Key Compounds Isolated from Corni fructus against β-Amyloid-Induced Neurotoxicity in PC12 Cells. Molecules, 17(9), 10831–10845.

Huebbe, P., Wagner, A.E., Boesch-Saadatmandi, C., Sellmer, F., Wolffram, S., Rimbach, G., 2010. Effect of dietary quercetin on brain quercetin levels and the expression of antioxidant and Alzheimer’s disease relevant genes in mice. Pharmacological Research, Nutraceuticals and Functional Foods 61(3), 242–246.

Ishisaka, A., Ichikawa, S., Sakakibara, H., Piskula, M.K., Nakamura, T., Kato, Y., Ito, M., Miyamoto, K., Tsuji, A., Kawai, Y., Terao, J., 2011. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology and Medicine, 51(7), 1329–1336.

Januarti, I.B., Taufiq, H., Sulistyaningsih, S., 2020. The Correlation of Total Flavonoid and Total Phenolic with Antioxidant Activity of Single Bulb Garlic (Allium Sativum) from Tawangmangu and Magetan. Journal of Pharmaceutical Sciences and Community, 16(2), 96–103.

Ji, S.T., Kim, M.-S., Park, H.R., Lee, E., Lee, Y., Jang, Y.J., Kim, H.S., Lee, J., 2013. Diallyl disulfide impairs hippocampal neurogenesis in the young adult brain. Toxicology Letters, 221(1), 31–38.

Kim, Jisung, Lee, S., Choi, B.-R., Yang, H., Hwang, Y., Park, J.H.Y., LaFerla, F.M., Han, J.-S., Lee, K.W., Kim, Jiyoung, 2017. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Molecular Nutrition & Food Research, 61(2), 1600194.

Kim, M.-J., Seong, A.-R., Yoo, J.-Y., Jin, C.-H., Lee, Y.-H., Kim, Y.J., Lee, J., Jun, W.J., Yoon, H.-G., 2011. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Molecular Nutrition & Food Research, 55(12), 1798–1808.

Koh, S.-H., Kwon, H., Park, K.H., Ko, J.K., Kim, J.H., Hwang, M.S., Yum, Y.N., Kim, O.-H., Kim, J., Kim, H.-T., Do, B.-R., Kim, K.S., Kim, H., Roh, H., Yu, H.-J., Jung, H.K., Kim, S.H., 2005. Protective effect of diallyl disulfide on oxidative stress-injured neuronally differentiated PC12 cells. Molecular Brain Research, 133(2), 176–186.

Leyton, L., Hott, M., Acuña, F., Caroca, J., Nuñez, M., Martin, C., Zambrano, A., Concha, M.I., Otth, C., 2015. Nutraceutical activators of AMPK/Sirt1 axis inhibit viral production and protect neurons from neurodegenerative events triggered during HSV-1 infection. Virus Research, 205, 63–72.

Li, G., Zhu, Y., Zhang, Y., Lang, J., Chen, Y., Ling, W., 2013. Estimated Daily Flavonoid and Stilbene Intake from Fruits, Vegetables, and Nuts and Associations with Lipid Profiles in Chinese Adults. Journal of the Academy of Nutrition and Dietetics, 113(6), 786–794.

Li, W.-H., Cheng, X., Yang, Y.-L., Liu, M., Zhang, S.-S., Wang, Y.-H., Du, G.-H., 2019. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Research, 1722, 146361.

Liu, E.Y.L., Xu, M.L., Jin, Y., Wu, Q., Dong, T.T.X., Tsim, K.W.K., 2018. Genistein, a Phytoestrogen in Soybean, Induces the Expression of Acetylcholinesterase via G Protein-Coupled Receptor 30 in PC12 Cells. Frontiers in Molecular Neuroscience, 11, 1–11.

Liu, W., Liu, C., Zhu, J., Shu, P., Yin, B., Gong, Y., Qiang, B., Yuan, J., Peng, X., 2012. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiology of Aging, 33(3), 522–534.

Martínez-Iglesias, O., Carrera, I., Carril, J.C., Fernández-Novoa, L., Cacabelos, N., Cacabelos, R., 2020. DNA Methylation in Neurodegenerative and Cerebrovascular Disorders. International Journal of Molecular Sciences, 21(6), 1–16.

Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P.D., Rogers, J., 2011. Epigenetic mechanisms in Alzheimer’s disease. Neurobiology of Aging, 32(7), 1161–1180.

Maya, S., Prakash, T., Madhu, K., 2018. Assessment of neuroprotective effects of Gallic acid against glutamate-induced neurotoxicity in primary rat cortex neuronal culture. Neurochemistry International, 121, 50–58.

Molina-Serrano, D., Kyriakou, D., Kirmizis, A., 2019. Histone Modifications as an Intersection Between Diet and Longevity. Frontiers in Genetics, 10, 192.

Oliveira, A.M.M., Hemstedt, T.J., Bading, H., 2012. Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15(8), 1111–1113.

Panche, A.N., Diwan, A.D., Chandra, S.R., 2016. Flavonoids: an overview. Journal of Nutritional Science, 5, 1–15.

Rangaraju, S., Solis, G.M., Thompson, R.C., Gomez-Amaro, R.L., Kurian, L., Encalada, S.E., Niculescu, A.B., Salomon, D.R., Petrascheck, M., 2015. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife, 4, 1–39.

Rinwa, P., Kumar, A., 2013. Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats. Neuroscience, 255, 86–98.

Sabogal-Guáqueta, A.M., Muñoz-Manco, J.I., Ramírez-Pineda, J.R., Lamprea-Rodriguez, M., Osorio, E., Cardona-Gómez, G.P., 2015. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 93, 134–145.

Sang, Y., Zhang, F., Wang, H., Yao, J., Chen, R., Zhou, Z., Yang, K., Xie, Y., Wan, T., Ding, H., 2017. Apigenin exhibits protective effects in a mouse model of D -galactose-induced aging via activating the Nrf2 pathway. Food & Function, 8(6), 2331–2340.

Sarubbo, F., Moranta, D., Asensio, V.J., Miralles, A., Esteban, S., 2017. Effects of Resveratrol and Other Polyphenols on the Most Common Brain Age-Related Diseases. Current Medicinal Chemistry, 24(38), 4245–4266.

Sezgin, Z., Dincer, Y., 2014. Alzheimer’s disease and epigenetic diet. Neurochemistry International, 78, 105–116.

Shukla, S., Meeran, S.M., Katiyar, S.K., 2014. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer letters, 355(1), 9–17.

Sun, X.-Y., Zheng, T., Yang, X., Liu, L., Gao, S.-S., Xu, H.-B., Song, Y.-T., Tong, K., Yang, L., Gao, Y., Wu, T., Hao, J.-R., Lu, C., Ma, T., Gao, C., 2019. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. Journal of Neuroinflammation, 16(1), 1–17.

Swaminathan, A., Basu, M., Bekri, A., Drapeau, P., Kundu, T.K., 2019. The Dietary Flavonoid, Luteolin, Negatively Affects Neuronal Differentiation. Frontiers in Molecular Neuroscience, 12, 1–7.

USDA (United States Department of Agriculture), 2015. USDA Database for the Flavonoid Content of Selected Foods. Release 3.2. USDA, Beltsville Human Nutrition Research Center.

Vahid, F., Zand, H., Nosrat–Mirshekarlou, E., Najafi, R., Hekmatdoost, A., 2015. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: A review. Gene, 562(1), 8–15.

Wei, X., Ma, Y., Li, F., He, H., Huang, H., Huang, C., Chen, Z., Chen, D., Chen, J., Yuan, X., 2021. Acute Diallyl Disulfide Administration Prevents and Reveres Lipopolysaccharide-Induced Depression-Like Behaviors in Mice via Regulating Neuroinflammation and Oxido-Nitrosative Stress. Inflammation, 44(4), 1381–1395.

Wong, H.-K.A., Veremeyko, T., Patel, N., Lemere, C.A., Walsh, D.M., Esau, C., Vanderburg, C., Krichevsky, A.M., 2013. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Human Molecular Genetics, 22(15), 3077–3092.

Xu, S.L., Bi, C.W.C., Choi, R.C.Y., Zhu, K.Y., Miernisha, A., Dong, T.T.X., Tsim, K.W.K., 2013. Flavonoids Induce the Synthesis and Secretion of Neurotrophic Factors in Cultured Rat Astrocytes: A Signaling Response Mediated by Estrogen Receptor. Evidence-Based Complementary and Alternative Medicine, 2013, e127075.

You, W., Zheng, W., Weiss, S., Chua, K.F., Steegborn, C., 2019. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. Scientific Reports, 9(1), 1–11.

Youn, K., Park, J.-H., Lee, Seonah, Lee, Seungeun, Lee, J., Yun, E.-Y., Jeong, W.-S., Jun, M., 2018. BACE1 Inhibition by Genistein: Biological Evaluation, Kinetic Analysis, and Molecular Docking Simulation. Journal of Medicinal Food, 21(4), 416–420.

Yuniarti, N., Juliandi, B., Sanosaka, T., Nakashima, K., 2018. Mid-gestational exposure to histone deacetylase inhibitor suberoylanilide hydroxamic acid influence cortical interneuron and astrocyte in mouse brain. Indonesian Journal of Biotechnology, 22(1), 31-38.

Zhang, C., Su, Z.-Y., Khor, T.O., Shu, L., Kong, A.-N.T., 2013. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochemical Pharmacology, 85(9), 1398–1404.

Zhang, N., Xu, H., Wang, Y., Yao, Y., Liu, G., Lei, X., Sun, H., Wu, X., Li, J., 2021. Protective mechanism of kaempferol against Aβ25-35-mediated apoptosis of pheochromocytoma (PC-12) cells through the ER/ERK/MAPK signalling pathway. Archives of Medical Science, 17(2), 406–416.

Zhao, F., Zhang, J., Chang, N., 2018. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. European Journal of Pharmacology, 824, 1–10.

Zhao, Y.-N., Li, W.-F., Li, F., Zhang, Z., Dai, Y.-D., Xu, A.-L., Qi, C., Gao, J.-M., Gao, J., 2013. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochemical and Biophysical Research Communications, 435(4), 597–602.




DOI: https://doi.org/10.24071/jpsc.004490

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

 

 

 

 

 

 

 

  

Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community)

Published by Faculty of Pharmacy, Universitas Sanata Dharma Yogyakarta

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPSC Stats