A Green Pathway to Advanced Cobalt Oxide Materials: Dye Integration and Phytochemical Modification
(1) David Umahi Federal University of Health Sciences (DUFUHS), Uburu, Ebonyi State, Nigeria
(2) David Umahi Federal University of Health Sciences (DUFUHS), Uburu, Ebonyi State, Nigeria
(3) David Umahi Federal University of Health Sciences (DUFUHS), Uburu, Ebonyi State, Nigeria
(4) David Umahi Federal University of Health Sciences (DUFUHS), Uburu, Ebonyi State, Nigeria
(5) David Umahi Federal University of Health Sciences (DUFUHS), Uburu, Ebonyi State, Nigeria
(6) David Umahi Federal University of Health Sciences (DUFUHS), Uburu, Ebonyi State, Nigeria
(*) Corresponding Author
Abstract
This study investigated the impact of natural dyes derived from three plant sources (Eupatorium odoratum, Ageratum conyzoides, and Pueraria phaseoloides) on the bandgap energies of cobalt oxide (CoO) thin films thin films were synthesized using a chemical bath deposition technique at 80-85°C and subsequently annealed at 100°C, 150°C and 200°C. The incorporation of these natural dyes significantly influenced the bandgap energies of the CoO films, with values ranging from 3.80 eV to 4.12 eV depending on the dye and annealing temperature with the as-grown films exhibiting bandgap energies ranging from 3.80 eV to 4.00 eV. Moderate heat treatment typically increased the bandgap of the films, but at higher temperatures, the behavior became more complex, with some dyes demonstrating a substantial reduction in bandgap. These findings demonstrate the potential of utilizing natural dyes to effectively tailor the electronic structure of CoO, offering a sustainable and eco-friendly approach to materials modification.
Full Text:
PDFReferences
[1] Gulino, A., Dapporto, P., Rossi, P., & Fragalà, I. (2003). A novel self-generating liquid MOCVD precursor for Co3O4 thin films. Chemistry of materials, 15(20), 3748-3752. https://pubs.acs.org/doi/full/10.1021/cm034305z
[2] Jiang, J., & Li, L. (2007). Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Materials Letters, 61(27), 4894-4896. https://doi.org/10.1016/j.matlet.2007.03.067
[3] Woods-Robinson, R., Han, Y., Zhang, H., Ablekim, T., Khan, I., Persson, K. A., & Zakutayev, A. (2020). Wide band gap chalcogenide semiconductors. Chemical reviews, 120(9), 4007-4055. https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.9b00600
[4] Shi, J., Zhang, J., Yang, L., Qu, M., Qi, D. C., & Zhang, K. H. (2021). Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Advanced materials, 33(50), 2006230. https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202006230
[5] Scaccabarozzi, A. D., Basu, A., Aniés, F., Liu, J., Zapata-Arteaga, O., Warren, R., & Anthopoulos, T. D. (2021). Doping approaches for organic semiconductors. Chemical Reviews, 122(4), 4420-4492. https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.1c00581
[6] Ele, U. S., Nworie, I. C., Ojobeagu, A. O., Otah, P. B., & Nwulegu, E. N. (2024). Influence of Magnesium Doping Concentrations and annealing on the Transmittance and Energy Band-gap of Sb2S3 Thin Films Deposited via Chemical Bath Deposition Technique. Nigerian Journal of Physics, 33(1), 23-27. https://doi.org/10.62292/njp.v33i1.2024.185
[7] Sathish, M., Radhika, N., & Saleh, B. (2023). Current status, challenges, and future prospects of thin film coating techniques and coating structures. Journal of Bio-and Tribo-Corrosion, 9(2), 35. https://link.springer.com/article/10.1007/s40735-023-00754-9
[8] Nnabuchi, M. N. (2005). Bandgap and optical properties of chemical bath deposited magnesium sulphide (MgS) thin films. Pacific Journal of Science and Technology, 6(2), 105-110. https://www.akamai.university/files/theme/AkamaiJournal/PJST6_2_105.pdf
[9] Bhosale, C. H., Kambale, A. V., Kokate, A. V., & Rajpure, K. Y. (2005). Structural, optical and electrical properties of chemically sprayed CdO thin films. Materials Science and Engineering: B, 122(1), 67-71. https://doi.org/10.1016/j.mseb.2005.04.015
[10] Nworie, I. C., Ele, U. S., Otah, P. B., Ojobeagu, A. O., Mbamara, C., Brown, N. W., & Ishiwu, S. M. U. (2024). Interdependence of Deposition Time, Doping concentration, and annealing on the optical behavior of Mg-Doped Antimony Sulphide (Sb2S3) Thin Films. The Journals of the Nigerian Association of Mathematical Physics, 67(2), 105-112. https://nampjournals.org.ng/index.php/home/article/view/386
[11] Petitto, S. C., Marsh, E. M., Carson, G. A., & Langell, M. A. (2008). Cobalt oxide surface chemistry: The interaction of CoO (1 0 0), Co3O4 (1 1 0) and Co3O4 (1 1 1) with oxygen and water. Journal of Molecular Catalysis A: Chemical, 281(1-2), 49-58. https://doi.org/10.1016/j.molcata.2007.08.023
[12] Ilenikhena, P. A. (2008). Optical characterization and possible solar energy applications of improved solution grown cobalt oxide (CoO) thin films at 300K. The African Review of Physics, 2(1). http://lamp.ictp.it/index.php/aphysrev/article/viewFile/91/42
[13] Kalu, P. N., Onah, D. U., Agbo, P. E., Augustine, C., Chikwenze, R. A., Anyaegbunam, F. N. C., & Dike, C. O. (2018). The Influence of Deposition Time and annealing Temperature on the Optical Properties of Chemically Deposited Cerium Oxide (Ceo) Thin Film. Journal of Ovonic Research Vol, 14(4), 293-305. https://openurl.ebsco.com/EPDB%3Agcd%3A12%3A25135036/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A132977781&crl=c&link_origin=scholar.google.com
[14] Kaurinovic, B., & Vastag, D. (2019). Flavonoids and phenolic acids as potential natural antioxidants (pp. 1-20). London, UK: IntechOpen. https://books.google.com.ng/books?hl=en&lr=&id=vHH8DwAAQBAJ&oi=fnd&pg=PA127&dq=flavonoids+and+phenols+are+known+for+their+potent+antioxidant+properties.+&ots=OO4ewUoWvq&sig=1RjZ7nOqhaBKsMJturKm68j2g_8&redir_esc=y&output=html_text
[16] Soares, S., Brandão, E., Guerreiro, C., Soares, S., Mateus, N., & De Freitas, V. (2020). Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules, 25(11), 2590. https://www.mdpi.com/1420-3049/25/11/2590
[17] Bai, R., Yao, C., Zhong, Z., Ge, J., Bai, Z., Ye, X., ... & Xie, Y. (2021). Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. European Journal of Medicinal Chemistry, 213, 113165. https://doi.org/10.1016/j.ejmech.2021.113165
[18] Maity, R., & Chattopadhyay, K. K. (2006). Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process. Solar energy materials and solar cells, 90(5), 597-606. https://doi.org/10.1016/j.solmat.2005.05.001
[19] Nnabuchi, M. N., & Augustine, C. (2018). Mn3O4/PbS thin films: preparation and effect of annealing temperature on some selected properties. Materials Research Express, 5(3), 036414. https://iopscience.iop.org/article/10.1088/2053-1591/aab589/meta
[20] Anyaegbunam, F. N. C., & Augustine, C. (2018). A study of optical band gap and associated urbach energy tail of chemically deposited metal oxides binary thin films. Digest Journal of Nanomaterials and Biostructures, 13(3), 847-856. https://chalcogen.ro/847_AugustineC.pdf
[21] Patil, V., Joshi, P., Chougule, M., & Sen, S. (2012). Synthesis and characterization of Co 3 O 4 thin film. Soft Nanoscience Letters, 2(01), 1-7. https://doi.org/10.4236/snl.2012.21001
[22] Christian, N. I., Ekuma, A. P., & Osondu, N. (2022). Phytochemical, Optical and FTIR Studies of ZnSe Thin Films for Solar Energy Applications. https://www.researchgate.net/publication/379285061_Phytochemical_Optical_and_FTIR_Studies_of_ZnSe_Thin_Films_for_Solar_Energy_Applications
[23] Liu, Z., Li, Z., Zhong, H., Zeng, G., Liang, Y., Chen, M., ... & Shao, B. (2017). Recent advances in the environmental applications of biosurfactant saponins: a review. Journal of environmental chemical engineering, 5(6), 6030-6038. https://doi.org/10.1016/j.jece.2017.11.021
DOI: https://doi.org/10.24071/ijasst.v7i1.11611
Refbacks
- There are currently no refbacks.
Publisher : Faculty of Science and Technology
Society/Institution : Sanata Dharma University

This work is licensed under a Creative Commons Attribution 4.0 International License.



