Essay Answer Detection System Uses Cosine Similarity and Similarity Scoring in Sentences

Siti Yuliyanti(1*), Diah Hidayatul Ula(2),

(1) Universitas Siliwangi
(2) Universitas Siliwangi
(*) Corresponding Author

Abstract


Essay exams are often an option to evaluate a person's understanding and interpretation of the material they have studied, rather than simply testing knowledge or understanding through essay exams that still rely on manual methods. The disadvantage of manual assessment is that it is prone to errors due to variations between examiners in providing assessments, coupled with the number of questions that must be assessed which is sometimes quite large, so it takes significant time. So this research carried out the development of an application with an automatic answer correction model with cosine similarity to measure how similar or how far two vectors are in multidimensional space. The result, system's potential in educational contexts was demonstrated by testing it on essay responses. To improve accuracy and usability, future developments could use sophisticated text scoring algorithms and provide more features. This study highlights the importance of automated grading systems for optimizing essay scoring in educational settings while maintaining scalability and reliability.

Keywords: essay exams, automated grading, essay checker, cosine similarity

Full Text:

PDF

References


[1] A. Salim, K. Rijal, and B. Hendrik, “Studi Literatur Sistem Penilaian Esai Otomatis Pada E-Learning Dengan Algoritma Winnowing,” J. Sist. Inf. dan Ilmu Komput., vol. 1, no. 3, pp. 163–172, 2023, [Online]. Available: https://doi.org/10.59581/jusiik-widyakarya.v1i3.1227

[2] A. C. Herlingga, I. P. E. Prismana, D. R. Prehanto, and D. A. Dermawan, “Algoritma Stemming Nazief & Adriani dengan Metode Cosine Similarity untuk Chatbot Telegram Terintegrasi dengan E-layanan,” J. Informatics Comput. Sci., vol. 2, no. 01, pp. 19–26, 2020, doi: 10.26740/jinacs.v2n01.p19-26.

[3] R. R. Et.al, “The Similarity of Essay Examination Results using Preprocessing Text Mining with Cosine Similarity and Nazief-Adriani Algorithms,” Turkish J. Comput. Math. Educ., vol. 12, no. 3, pp. 1415–1422, 2021, doi: 10.17762/turcomat.v12i3.938.

[4] R. I. Pratama, Munir, and R. Megasari, “Detector Similarity Answers Between Students on Essay Digital Exam System,” Proc. 7th Math. Sci. Comput. Sci. Educ. Int. Semin. MSCEIS 2019, 2020, doi: 10.4108/eai.12-10-2019.2296348.

[5] T. Wahyuningsih et al., “Text Mining an Automatic Short Answer Grading (ASAG), Comparison of Three Methods of Cosine Similarity, Jaccard Similarity and Dice’s Coefficient,” J. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 2, pp. 343–348, 2021, doi: 10.17762/turcomat.v12i3.938.

[6] W. A. S. S L B Ginting, Y R Ginting, Sutomo, “Aplikasi Deteksi Kemiripan Kata Menggunakan Algoritma Rabin-Karp,” J. Teknol. dan Inf., vol. 12, no. 2, pp. 162–175, 2022, doi: 10.34010/jati.v12i2.

[7] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/ACCESS.2019.2895334.

[8] F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, “Quantifying uncertainty in internet of medical things and big-data services using intelligence and deep learning,” IEEE Access, vol. 7, pp. 115749–115759, 2019, doi: 10.1109/ACCESS.2019.2931637.

[9] J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.

[10] D. Nallaperuma et al., “Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019, doi: 10.1109/TITS.2019.2924883.

[11] M. M. Fawzy, A. S. Elsharkawy, Y. A. Khalifa, and A. A. hassan, “Contractor selection by using multi-criteria decision-making for Egyptian road maintenance,” Int. J. Syst. Assur. Eng. Manag., 2024, doi: 10.1007/s13198-024-02249-3.

[12] S. Yuliyanti and Rizky, “Implementasi Algoritma Rabin Karp Untuk Mendeteksi Kemiripan Dokumen Stmik Bandung,” J. Bangkit Indones., vol. 10, no. 02, p. 1, 2020, doi: 10.52771/bangkitindonesia.v10i02.124.

[13] S. Legianto, “Implementasi Text Mining Untuk Mendeteksi Hate Speech Pada Twitter,” p. 60, 2019.

[14] R. A. Raharjo, I. M. G. Sunarya, and D. G. H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” Elkom J. Elektron. dan Komput., vol. 15, no. 2, pp. 456–464, 2022, doi: 10.51903/elkom.v15i2.918.

[15] F. Muhammad, N. M. Maghfur, and A. Voutama, “Sentiment Analysis Dataset on COVID-19 Variant News,” Sci. J. Inromation Syst. Informatics, vol. 4, no. 1, pp. 382–391, 2022.

[16] L. R. Setiawan and D. Nasien, “Cosine Similarity for Essay Answer Detection,” J. Appl. Bus. Technol., vol. 1, no. 1, pp. 36–40, 2020, doi: 10.35145/jabt.v1i1.21.

[17] F. Setio Pribadi, U. Hasanah, and D. Nur Sa, “Automatic Short Answer Scoring (ASAS) Using String-based Similarity and Query Expansion,” pp. 678–684.

[18] B. L. Qasthari, E. Susanti, and M. Sholeh, “Classification Of Lung and Colon Cancer Histopathological Images Using Convolutional Neural Network (CNN) Method An A Pre-Trained Models,” Int. J. Appl. Sci. Smart Technol., vol. 5, no. 1, pp. 133–142, 2023, doi: 10.24071/ijasst.v5i1.6325.

[19] E. L. Amalia, A. J. Jumadi, I. A. Mashudi, and D. W. Wibowo, “Analisis Metode Cosine Similarity Pada Aplikasi Ujian Online Otomatis (Studi Kasus JTI POLINEMA),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, pp. 343–348, 2021, doi: 10.25126/jtiik.2021824356.

[20] N. Vendyansyah and Y. A. Pranoto, “Perancangan dan Pembuatan Aplikasi untuk Mendeteksi Kemiripan Jawaban Menggunakan Cosine Similarity,” J. Tek. (Jurnal Fak. Tek. Univ. Islam Lamongan), vol. 13, no. 1, pp. 23–28, 2021.




DOI: https://doi.org/10.24071/ijasst.v6i2.9152

Refbacks

  • There are currently no refbacks.









Publisher : Faculty of Science and Technology

Society/Institution : Sanata Dharma University

 

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.