Clustering and Trend Analysis of Priority Commodities in the Archipelago Capital Region (IKN) using a Data Mining Approach
(1) Universitas Siliwangi
(2) Universitas Siliwangi
(3) Universitas Siliwangi
(4) Universitas Siliwangi
(*) Corresponding Author
Abstract
The policy of moving the capital from Jakarta to East Kalimantan planned by the President of the Republic of Indonesia Joko Widodo has caused a lot of polemic among the public. There are quite a few positive and negative comments on social media regarding the policy of moving the capital. The process of moving the capital requires careful preparation. One thing that needs to be considered is food security in IKN. This research provides recommendations for the main food commodities in IKN by applying data mining. We collect food productivity data available on the official website for East Kalimantan province. These data are processed and grouped into two groups, namely horticulture and livestock products using the K-Means method. After grouping, we predict the increase in productivity of each group using the ARIMA method. This research produces output in the form of grouping commodities into horticulture and livestock products. Productivity results for each type of commodity are displayed from 2016 to 2020 based on data on the official East Kalimantan Province website. Based on this data, predictions are made using the ARIMA method to predict productivity results from 2021 to 2025. Commodities with total productivity are grouped into high-priority commodities. Grouping the amount of productivity is carried out using the clustering method by comparing the amount of productivity for each commodity and producing commodities that are low priority, middle priority, priority and top priority based on the highest to lowest productivity numbers. The cluster quality for grouping horticultural commodities is 99.1%, while the cluster quality for grouping livestock commodities is 87.5%. Hasil prediksi terbaik yaitu ketika memprediksi produksi salak dan slaughter cattle dengan model ARIMA (0, 1, 0) dan ARIMA (2, 2, 2).
Full Text:
PDFReferences
R. Harini, I. Sukri, R. D. Ariani, E. P. I. Faroh, H. Nadia, and U. Kafafa, “The Study of Food Security in the Special Region of Yogyakarta, Indonesia,” Forum Geografi, vol. 35, no. 2, Feb. 2022, doi: 10.23917/forgeo.v35i2.15855.
A. Garbero and L. Jäckering, “The potential of agricultural programs for improving food security: A multi-country perspective,” Glob Food Sec, vol. 29, p. 100529, Jun. 2021, doi: 10.1016/j.gfs.2021.100529.
T. T. Tora, D. T. Degaga, and A. U. Utallo, “Drought vulnerability perceptions and food security status of rural lowland communities: An insight from Southwest Ethiopia,” Current Research in Environmental Sustainability, vol. 3, p. 100073, 2021, doi: 10.1016/j.crsust.2021.100073.
N. Endey, I. Kadek, S. Arsana, A. Y. Katili, A. Sahabi, and M. A. Talalu, “Analisis Daya Saing Komoditi Unggulan Gorontalo Dalam Mendukung Ibu Kota Negara Baru Republik Indonesia,” vol. 3, [Online]. Available: http://journal.unismuh.ac.id/index.php/equilibrium
A. Zezza, C. Carletto, B. Davis, and P. Winters, “Assessing the impact of migration on food and nutrition security,” Food Policy, vol. 36, no. 1, pp. 1–6, Feb. 2011, doi: 10.1016/j.foodpol.2010.11.005.
S. MIN, L. HOU, W. Hermann, J. HUANG, and Y. MU, “The impact of migration on the food consumption and nutrition of left-behind family members: Evidence from a minority mountainous region of southwestern China,” J Integr Agric, vol. 18, no. 8, pp. 1780–1792, Aug. 2019, doi: 10.1016/S2095-3119(19)62588-8.
A. Parven et al., “Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh,” International Journal of Disaster Risk Reduction, vol. 78, p. 103119, Aug. 2022, doi: 10.1016/j.ijdrr.2022.103119.
A. A. Simangunsong, I. Gunawan, Z. M. Nasution, and G. Artikel, “Pengelompokkan Hasil Produksi Tanaman Perkebunan Berdasarkan Provinsi Menggunakan Metode K-Means Clustering Production of Plantation Crops by Province Using the K-Means Method Article Info ABSTRAK,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 4, pp. 2828–9099, 2022, doi: 10.55123/jomlai.v1i4.1661.
L. M. Harahap, W. Fuadi, L. Rosnita, E. Darnila, and R. Meiyanti, “Klastering Sayuran Unggulan Menggunakan Algoritma K-Means,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, Dec. 2022, doi: 10.28932/jutisi.v8i3.5277.
S. Nosratabadi, S. Ardabili, Z. Lakner, C. Mako, and A. Mosavi, “Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS,” Agriculture, vol. 11, no. 5, p. 408, May 2021, doi: 10.3390/agriculture11050408.
J. Fattah, L. Ezzine, Z. Aman, H. El Moussami, and A. Lachhab, “Forecasting of demand using ARIMA model,” International Journal of Engineering Business Management, vol. 10, p. 184797901880867, Jan. 2018, doi: 10.1177/1847979018808673.
A. H. Salsabila and N. Nurwati, “DEFORESTASI DAN MIGRASI PENDUDUK KE IBU KOTA BARU KALIMANTAN TIMUR: PERAN SINERGIS PEMERINTAH DAN MASYARAKAT,” Prosiding Penelitian dan Pengabdian kepada Masyarakat, vol. 7, no. 1, p. 27, Jul. 2020, doi: 10.24198/jppm.v7i1.28259.
K. K. Al-jabery, T. Obafemi-Ajayi, G. R. Olbricht, and D. C. Wunsch II, “Data preprocessing,” in Computational Learning Approaches to Data Analytics in Biomedical Applications, Elsevier, 2020, pp. 7–27. doi: 10.1016/B978-0-12-814482-4.00002-4.
V. Purwayoga and I. S. Sitanggang, “Clustering Potential Area of Fusarium Oxysporum As A Disease of Garlic,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Jul. 2020. doi: 10.1088/1755-1315/528/1/012040.
V. Purwayoga, “Modified skyline query to measure priority region for personal protective equipment recipient of COVID-19 health workers,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 3, pp. 167–173, Jul. 2021, doi: 10.14710/jtsiskom.2021.14003.
V. Purwayoga, “Optimasi Jumlah Cluster pada Algoritme K-Means untuk Evaluasi Kinerja Dosen,” Jurnal Informatika Universitas Pamulang, vol. 6, no. 1, p. 118, Mar. 2021, doi: 10.32493/informatika.v6i1.9522.
H. Jurnal, S. Budi, and H. Sakur, “JURNAL INFORMATIKA DAN TEKONOLOGI KOMPUTER PERBANDINGAN DISTANCE MEASURES PADA K-MEANS CLUSTER DAN TOPSIS DENGAN KORELASI PEARSON DAN SPEARMAN,” Maret, vol. 3, no. 1, pp. 74–81, 2023.
L. N. Kasanah, “Aplikasi Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Jumlah Demam Berdarah Dengue (DBD) di Puskesmas Mulyorejo,” Jurnal Biometrika dan Kependudukan, vol. 5, no. 2, p. 177, Sep. 2017, doi: 10.20473/jbk.v5i2.2016.177-189.
S. D. Sudrazat, H. Purba, E. Wijaksono, W. Pranowo, and M. I. Hibatullah, “PREDIKSI KECEPATAN GELOMBANG S DENGAN MACHINE LEARNING PADA SUMUR ‘S-1’, CEKUNGAN SUMATERA TENGAH, INDONESIA,” Lembaran publikasi minyak dan gas bumi, vol. 54, no. 1, pp. 29–35, Apr. 2020, doi: 10.29017/LPMGB.54.1.502.
N. D. Arianti, E. Saputra, and A. Sitorus, “An automatic generation of pre-processing strategy combined with machine learning multivariate analysis for NIR spectral data,” J Agric Food Res, vol. 13, p. 100625, Sep. 2023, doi: 10.1016/j.jafr.2023.100625.
DOI: https://doi.org/10.24071/ijasst.v6i1.7798
Refbacks
Publisher : Faculty of Science and Technology
Society/Institution : Sanata Dharma University
This work is licensed under a Creative Commons Attribution 4.0 International License.