Inorganic Geochemistry of Coal from Patappa Village, Bone District, and Masenrengpulu Village, Barru District, South Sulawesi Province Using XRF Method

Anshariah Anshariah(1), Alam Budiman Thamsi(2*), Mohammad Tholib(3),

(1) Universitas Muslim Indonesia
(2) Universitas Muslim Indonesia
(3) Universitas Muslim Indonesia
(*) Corresponding Author

Abstract


The chemical composition of coal is almost the same as that of plant tissue, containing the main elements of elements C, H, O, N, S, and P. An in-depth study of coal inorganic compounds is needed because coal inorganic compounds are the primary variable in ash formation during coal combustion. This study uses the X-ray fluorescence method to reveal the differences and similarities in inorganic chemical composition contained in coal in Bone Regency and Barru Regency. Coal in Masenrengpulu Village has the Al2O3 compound as the most dominant compound, while coal in Patappa Village has the SiO2 compound as the most prevalent compound. The concentration of inorganic sulfide minerals in the village of Masenrengpulu was influenced by igneous rock intrusion and deposition processes. In contrast, the deposition process only affected the inorganic sulfide minerals of coal in Patappa village. The significant elements found in coal in the Masenrengpulu and Patappa Villages are Si, Al, Fe, S, Ca, K, and Ti. Coal inorganic sulfide minerals in Masenrengpulu Village with Patappa Village have high concentrations in the bottom channel of the coal seam and a low concentration in the middle channel and top of the seam. Coal inorganic sulfide minerals in Masenrengpulu Village and Patappa Village have high concentrations in the coal seam's lower channel and low concentrations in the middle and upper channels.

Keywords: Coal Comparison, Mallawa Formation, XRF, Inorganic Geochemistry.

Full Text:

PDF

References


[1] Z. Zamani, H. Rahimpour-Bonab, and R. Littke, “Coal petrology, sedimentology and depositional environment of the Parvadeh coals in the Upper Triassic, Tabas Block of Central-East Iran,” Int J Coal Sci Technol, vol. 10, no. 1, pp. 1–20, Dec. 2023, doi: 10.1007/S40789-023-00600-W/FIGURES/9.

[2] S. I. Arbuzov, “Geochemistry, mineralogy and genesis of rare metal (Nb-Ta-Zr-Hf-Y-REE-Ga) coals of the seam XI in the south of Kuznetsk Basin, Russia,” Ore Geol Rev, vol. 113, 2019, doi: 10.1016/j.oregeorev.2019.103073.

[3] H. Zhang et al., “Development of an in-situ gel from CO 2-captured complex solution and inhibiting coal spontaneous combustion: A case study in thermal engineering,” Case Studies in Thermal Engineering, vol. 50, p. 103423, 2023, doi: 10.1016/j.csite.2023.103423.

[4] T. Rinder, “Geochemistry of coal mine drainage, groundwater, and brines from the Ibbenbüren mine, Germany: A coupled elemental-isotopic approach,” Applied Geochemistry, vol. 121, 2020, doi: 10.1016/j.apgeochem.2020.104693.

[5] M. I. Juradi et al., “Identifikasi Clay Bands Pada Endapan Batubara Berdasarkan Data Well Logging Di Daerah Nunukan Provinsi Kalimantan Utara,” Jurnal Geomine, vol. 9, no. 1, pp. 17–24, 2021, doi: 10.33536/jg.v9i1.812.

[6] E. M. E. Malaidji, A. Anshariah, and A. A. B. A. A. Budiman, “Analisis Proksimat, Sulfur, Dan Nilai Kalor Dalam Penentuan Kualitas Batubara Di Desa Pattappa Kecamatan Pujananting Kabupaten Barru Provinsi Sulawesi Selatan,” Jurnal Geomine, vol. 6, no. 3, pp. 131–137, Dec. 2018, doi: 10.33536/JG.V6I3.244.

[7] N. Jafar, F. Ridwan, and A. B. Thamsi, “Identification of Rare Earth Metal Content in Fly Ash and Bottom Ash Coal Combustion of PT Bosowa Energi PLTU Jeneponto Regency,” International Journal of Engineering and Science Applications, vol. 9, no. 2, pp. 78–83, Dec. 2022, Accessed: Dec. 30, 2022. [Online]. Available: http://pasca.unhas.ac.id/ojs/index.php/ijesca/article/view/4244

[8] Y. Qi, “Organic matter provenance and depositional environment of marine-to-continental mudstones and coals in eastern Ordos Basin, China—Evidence from molecular geochemistry and petrology,” Int J Coal Geol, vol. 217, 2020, doi: 10.1016/j.coal.2019.103345.

[9] U. Kleinhans, C. Wieland, F. J. Frandsen, and H. Spliethoff, “Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior,” Prog Energy Combust Sci, vol. 68, pp. 65–168, Sep. 2018, doi: 10.1016/J.PECS.2018.02.001.

[10] B. Liu, “Geochemistry of Carboniferous coals from the Laoyaogou mine, Ningwu coalfield, Shanxi Province, northern China: Emphasis on the enrichment of valuable elements,” Fuel, vol. 279, 2020, doi: 10.1016/j.fuel.2020.118414.

[11] S. Widodo, S. Sufriadin, A. Imai, and K. Anggayana, “Characterization of Some Coal Deposits Quality by Use of Proximate and Sulfur Analysis in the Southern Arm Sulawesi, Indonesia,” International Journal of Engineering and Science Applications, vol. 3, no. 2, pp. 137–143, Apr. 2017, Accessed: Jan. 19, 2024. [Online]. Available: http://pasca.unhas.ac.id/ojs/index.php/ijesca/article/view/1085

[12] A. Artiningsih, S. Widodo, and A. Firmansyah, “Studi Penentuan Kandungan Sulfur (Sulphur Analysis) Dalam Batubara Pada PT Geoservices Samarinda Kalimantan Timur,” Jurnal Geomine, vol. 2, no. 1, Aug. 2015, doi: 10.33536/JG.V2I1.25.

[13] S. Brotowati, “Peningkatan Kualitas Batubara Subbituminus Mallawa Menjadi Batubara Bituminus,” INTEK: Jurnal Penelitian, vol. 5, no. 1, p. 34, Apr. 2018, doi: 10.31963/INTEK.V5I1.197.

[14] E. P. Umar and A. Nawir, “Analisis Resistivitas Batu Bara Barru Dusun Palluda Kabupaten Barru Provinsi Sulawesi Selatan,” Jurnal Geomine, vol. 5, no. 1, Apr. 2017, doi: 10.33536/JG.V5I1.98.

[15] S. Bakri, J. Jefri, and S. Widodo, “Coal Quality Analysis Based on Proximate and Ultimate Test Results in Massenreng Pulu Village, Lamuru District, Bone Regency,” Journal of Geology and Exploration, vol. 1, no. 2, pp. 36–40, Dec. 2022, doi: 10.58227/JGE.V1I2.7.

[16] . H., A. B. Thamsi, . F., I. Nur, A. Maulana, and A. F. Heriansyah, “Geokimia Endapan Bijih Besi Daerah Pakke Kecamatan Bontocani, Kabupaten Bone, Sulawesi Selatan,” Jurnal Pertambangan, vol. 6, no. 4, pp. 161–164, Jan. 2022, doi: 10.36706/JP.V6I4.1212.

[17] Ittong, A. Maulana, and U. R. Irfan, “Characteristic of Alteration and Mineralization of Sulfide Deposits at Sasak area, Tana Toraja, Indonesia,” IOP Conf Ser Earth Environ Sci, vol. 1272, no. 1, p. 012029, Dec. 2023, doi: 10.1088/1755-1315/1272/1/012029.

[18] S. Widodo, Sufriadin, M. Thamrin, and K. Alif, “Reduction of Sulfur and Ash Content on Mallawa’s Coal using Flotation Column Method,” AIP Conf Proc, vol. 2543, Nov. 2022, doi: 10.1063/5.0095362.

[19] M. Zhou, “Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium,” Ore Geol Rev, vol. 139, 2021, doi: 10.1016/j.oregeorev.2021.104582.

[20] J. Li, “First insights into mineralogy, geochemistry, and isotopic signatures of the Upper Triassic high‑sulfur coals from the Thai Nguyen Coal field, NE Vietnam,” Int J Coal Geol, vol. 261, 2022, doi: 10.1016/j.coal.2022.104097.

[21] B. Sun, “Geochemistry of two high-lithium content coal seams, Shanxi Province, China,” Int J Coal Geol, vol. 260, 2022, doi: 10.1016/j.coal.2022.104059.

[22] A. I. Karayigit, “The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balıkesir (Western Turkey),” Int J Coal Geol, vol. 228, 2020, doi: 10.1016/j.coal.2020.103548.

[23] T. U. Taliding, S. Widodo, and A. Ilyas, “Proximate and Microscopy Analysis of Coal in Tamalea Village, Bonehau District, Mamuju Regency, West Sulawesi Province, Indonesia,” IOP Conf Ser Earth Environ Sci, vol. 1134, no. 1, 2023, doi: 10.1088/1755-1315/1134/1/012028.

[24] H. Schweitzer, “Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds: Powder River Basin, USA,” Geochim Cosmochim Acta, vol. 245, pp. 495–513, 2019, doi: 10.1016/j.gca.2018.11.009.

[25] S. I. Arbuzov, “Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan),” Int J Coal Geol, vol. 206, pp. 106–120, 2019, doi: 10.1016/j.coal.2018.10.013.




DOI: https://doi.org/10.24071/ijasst.v6i2.7159

Refbacks

  • There are currently no refbacks.









Publisher : Faculty of Science and Technology

Society/Institution : Sanata Dharma University

 

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.