Classification of Toddler Nutrition Using C4.5 Decision Tree Method
(1) 
(2) 
(3) 
(*) Corresponding Author
Abstract
Nutrition is very much needed in the growth of toddlers. It is very important to give babies a balanced nutritional intake at the right stage so that the baby grows healthy and is accustomed to a healthy lifestyle in the future. Children under five years of age are a group that is vulnerable to health and nutrition problems. In determining the nutritional status, it can be done in a system manner using the C4.5 decision tree classification method and entering several variables or attributes. The dataset tested was 853 toddlers. Classification is carried out to determine the nutritional status based on the weight/age (BB/U), height/age (TB/U) and weight/height (BB/TB) categories. The attributes used for the classification of BB/U are gender, weight and age. The attributes used for TB/U are gender, body length or height, and age. The attributes used for BB/TB are gender, weight, body length or height, and age. The average accuracy of the BB/U category is 90.16%, the average accuracy of the TB/U category is 76.64%, and the average accuracy of the BB/TB category is 83.83%.
Full Text:
PDFReferences
P.T. Juniman. “4 Ancaman Bahaya yang Dialami Balita dengan Gizi Buruk” [Online]. Available: https://www.cnnindonesia.com/gaya-hidup/20180125110614-255-271456/4-ancaman-bahaya-yang-dialami-balita-dengan-gizi-buruk, 2008
Kemenkes. Hasil Utama Riset Kesehatan Dasar Kementerian Kesehatan 2018 [Online]. Available: https://www.depkes.go.id/resources/download/info-terkini/materi_rakorpop_2018/Hasil%20Riskesdas%202018.pdf. 2018
C. Anam and H.B. Santoso. “Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,” Jurnal ENERGY, 8 (1), 13–19, 2018. [Online]. Available: https://ejournal.upm.ac.id/index.php/energy/article/view/111
U. Febriana, M.T. Furqon, and B. Rahayudi. (2017). “Klasifikasi Penyakit Typhoid Fever (TF) dan Dengue Haemorhagic Fever (DHF) dengan Menerapkan Algoritma Decision Tree C4.5 (Studi Kasus : Rumah Sakit Wilujeng Kediri),” Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer, 2 (3), 1275–1282, 2017. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1124.
J. Han and M. Kamber. Data Mining: Concept and Techniques, Second Edition, Morgan Kaufmann Publishers, 2006.
D.T. Larose. Discovering Knowledge in Data: An Introduction to Data Mining, John Willey & Sons, Inc., 2005.
DOI: https://doi.org/10.24071/ijasst.v3i1.3366
Refbacks
- There are currently no refbacks.
Publisher : Faculty of Science and Technology
Society/Institution : Sanata Dharma University
This work is licensed under a Creative Commons Attribution 4.0 International License.