Braille Pattern Detection Modeling Using Inception V3 Architecture Using Median Filter Implementation and Segmentation

Abdul Latif(1), Siti Yuliyanti(2*), Muhammad Al-Husaini(3),

(1) Siliwangi University
(2) Siliwangi University
(3) Siliwangi University
(*) Corresponding Author

Abstract


This study aims to detect Braille letter patterns using the InceptionV3 architecture combined with the application of median filter and image segmentation. The dataset consists of 4,160 Braille images, with an average of 160 images for each letter from A to Z. The data is divided into 3,900 images for training, which are then split into 3,120 images for training and 780 images for validation, and 260 images are used for testing. Each image is resized to 299x299 pixels before being fed into the model. This study uses 100 epochs and applies early stopping to avoid overfitting. Two learning rate values are tested, namely 0.001 and 0.0001. The results show that the application of a median filter and segmentation significantly improves model performance, producing better accuracy, precision, recall, and F1 values compared to models without these techniques. At a learning rate of 0.001, the model achieves 99.65% accuracy, 99.62% precision, and 99.61% recall. On the other hand, without a median filter and segmentation at a learning rate of 0.0001, although accuracy and precision decreased, the values still reached 99.65% and 99.62%.


Full Text:

PDF

References


[1] K. M. Farrand, K. Koehler, and A. Vasquez, “Literary Braille Instruction: A Review of University Personnel Preparation Programs,” https://doi.org/10.1177/0145482X221130356, vol. 116, no. 5, pp. 617–628, Nov. 2022, doi: 10.1177/0145482X221130356.

[2] N. Elaraby, S. Barakat, and A. Rezk, “A generalized ensemble approach based on transfer learning for Braille character recognition,” Inf Process Manag, vol. 61, no. 1, p. 103545, Jan. 2024, doi: 10.1016/J.IPM.2023.103545.

[3] Jahandad, S. M. Sam, K. Kamardin, N. N. Amir Sjarif, and N. Mohamed, “Offline Signature Verification using Deep Learning Convolutional Neural Network (CNN) Architectures GoogLeNet Inception-v1 and Inception-v3,” Procedia Comput Sci, vol. 161, pp. 475–483, Jan. 2019, doi: 10.1016/J.PROCS.2019.11.147.

[4] M. F. Herlambang, A. N. Hermana, and K. R. Putra, “Pengenalan Karakter Huruf Braille dengan Metode Convolutional Neural Network,” Systemic: Information System and Informatics Journal, vol. 6, no. 2, pp. 20–26, 2021, doi: 10.29080/systemic.v6i2.969.

[5] H. Tang, R. Ni, Y. Zhao, and X. Li, “Median filtering detection of small-size image based on CNN,” J Vis Commun Image Represent, vol. 51, pp. 162–168, Feb. 2018, doi: 10.1016/J.JVCIR.2018.01.011.

[6] R. H. Hasan, I. S. Aboud, and R. M. Hassoo, “Braille Character Recognition System : Review,” vol. 18, no. 1, pp. 30–39, 2024.

[7] A. Al-Salman and A. AlSalman, “Fly-LeNet: A deep learning-based framework for converting multilingual braille images,” Heliyon, vol. 10, no. 4, p. e26155, Feb. 2024, doi: 10.1016/J.HELIYON.2024.E26155.

[8] H. J. Andriansyah, Marindo, “PENGENALAN KARAKTER BRAILLE MEMANFAATKAN CONVOLUTIONAL NEURAL NETWORK,” vol. 4, no. 1, pp. 41–54, 2021.

[9] M. Minarni, K. Rizka, Y. Yuhendra, D. W. T. Putra, and I. Warman, “Penerapan Deteksi Sobel Berbasis Algoritma Backpropagation pada Pengenalan Pola Huruf Vokal,” Jurnal Minfo Polgan, vol. 12, no. 2, pp. 1829–1839, 2023, doi: 10.33395/jmp.v12i2.13019.

[10] Mardiah et al, “Application of Image Median Filter and Histogram Equalization on Old Building Images Pendahuluan,” vol. 1, no. September, pp. 0–7, 2023.

[11] M. A. Rajab and L. E. George, “Stamps extraction using local adaptive k- means and ISODATA algorithms,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 1, pp. 137–145, 2021, doi: 10.11591/ijeecs.v21.i1.pp137-145.

[12] A. C. O. Reddy and K. Madhavi, “Hierarchy based firefly optimized k-means clustering for complex question answering,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 17, no. 1, pp. 264–272, 2019, doi: 10.11591/ijeecs.v17.i1.pp264-272.

[13] Jahandad, S. M. Sam, K. Kamardin, N. N. Amir Sjarif, and N. Mohamed, “Offline Signature Verification using Deep Learning Convolutional Neural Network (CNN) Architectures GoogLeNet Inception-v1 and Inception-v3,” Procedia Comput Sci, vol. 161, pp. 475–483, Jan. 2019, doi: 10.1016/J.PROCS.2019.11.147.

[14] S. Raghuwanshi, A. Sukhad, A. Rasool, V. K. Meena, A. Jadhav, and K. Shivakarthik, “Early Detection of Brain Tumor from MRI Images Using Different Machine Learning Techniques,” Procedia Comput Sci, vol. 235, pp. 3094–3104, Jan. 2024, doi: 10.1016/J.PROCS.2024.04.293.

[15] Maad M. Mijwel, “Artificial Neural Networks Advantages and Disadvantages,” Mesopotamian journal of BigData, vol. Vol. (2021, pp. 29–31, 2021.

[16] S. Samidin and A. Fadjeri, “Klasifikasi Gambar Batu-Kertas-Gunting Menggunakan Convolutional Neural Network dengan Fungsi Callback untuk Mencegah Overfitting,” Jurnal Penelitian Inovatif, vol. 4, no. 2, pp. 785–794, 2024, doi: 10.54082/jupin.413.

[17] N. Saqib, K. F. Haque, V. P. Yanambaka, and A. Abdelgawad, “Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data,” Algorithms, vol. 15, no. 4, 2022, doi: 10.3390/a15040129.

[18] V. C. P. A. M. L. S. Shilpi Yadav, “Recognition of Pandemic virus Covid-19 using Inception-V3,” International Journal of Advanced Science and Technology, vol. 29, no. 12s, pp. 1675–1679, Jun. 2020, Accessed: Sep. 10, 2024. [Online]. Available: http://sersc.org/journals/index.php/IJAST/article/view/23906




DOI: https://doi.org/10.24071/ijasst.v7i2.12781

Refbacks

  • There are currently no refbacks.









Publisher : Faculty of Science and Technology

Society/Institution : Sanata Dharma University

 

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.