Coconut Shell-Based Briquettes for Sustainable Energy: A Bibliometric Study on Biomass Mixtures and Binder Materials

Ridho Darmawan(1), Awaly Ilham Dewantoro(2), Efri Mardawati(3*),

(1) Universitas Padjadjaran
(2) Universitas Padjadjaran
(3) Universitas Padjadjaran
(*) Corresponding Author

Abstract


Coconut shell is one of the potential biomass resources that has been widely developed as a raw material for briquettes to support renewable energy initiatives and circular economy practices. This study aimed to explore the development, research focus, and future directions of cocomut shell briquette through a systematic literature review. The Methodi Ordinatio approach was employed for analysis, resulting in a final portfolio of 134 selected documents, which were the further examined to identify trends and research gaps. The findings showed that mixturing coconut shell with other biomass such as from wood-based and agricultural-based residues could enhance the briquette performance. Moreover, alternative binders such as lignocellulosic carbohydrate and its derivatives, plant sap, and waste cooking oil offered promising subsitutes for food-based materials. Oily biomass, such as eucalyptus wastes and pine resin, was also found to improve briquette performance due to its volatile content. In addition, the integration of automation technologies based on microcontrolers and the Internet of Things (IoT) began to applied to improve production efficiency and consistency. It is expected that the findings of this study can serve as a foundation for future development focused on material formulation and technological innovations for coconut shell-based briquette production that are more efficient, sustainable, and responsive to future energy needs.

Full Text:

PDF

References


[1] J. Scheffran, M. Felkers, and R. Froese, “Economic Growth and the Global Energy Demand,” in Green Energy to Sustainability: Strategies for Global Industries, A. A. Vertès, N. Qureshi, H. P. Blaschek, and H. Yukawa, Eds., John Wiley and Sons Ltd, 2020, ch. 1, pp. 1–44. doi: 10.1002/9781119152057.ch1.

[2] M. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, and D. L. Smith, “Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization,” Renew. Sustain. Energy Rev., vol. 139, no. December 2020, p. 110691, 2021, doi: 10.1016/j.rser.2020.110691.

[3] A. I. Dewantoro, M. Fauzan, M. A. R. Lubis, D. Nurliasari, and E. Mardawati, “Carboxymethyl holocellulose as alternative carbohydrate-based binder for biomass briquette development,” Adv. Food Sci. Sustain. Agric. Agroindustrial Eng., vol. 7, no. 4, pp. 292–301, 2024, doi: 10.21776/10.21776/ub.afssaae.2024.007.04.2.

[4] A. A. Adeleke et al., “A Review on Biomass Briquettes as Alternative and Renewable Fuels,” in 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science, ICMEAS 2023, 2023. doi: 10.1109/ICMEAS58693.2023.10429785.

[5] N. T. S. Saptadi, A. Suyuti, A. A. Ilham, and I. Nurtanio, “Modeling of Organic Waste Classification as Raw Materials for Briquettes using Machine Learning Approach,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 3, pp. 577–585, 2023, doi: 10.14569/IJACSA.2023.0140367.

[6] I. S. Utami et al., “How to Make Biomass Briquettes with Their Characteristics Analysis,” Indones. J. Sci. Technol., vol. 9, no. 3, pp. 585–610, 2024, doi: 10.17509/ijost.v9i3.72170.

[7] G. V. Prasetyadi and J. P. G. Sutapa, “Utilizing Merbau Wood and Coconut Shell Wastes as Biofuel in the Form of Pellets,” J. Ecol. Eng., vol. 24, no. 1, pp. 172–178, 2023, doi: 10.12911/22998993/156057.

[8] M. M. Ashfaq, G. Bilgic Tüzemen, and A. Noor, “Exploiting agricultural biomass via thermochemical processes for sustainable hydrogen and bioenergy: A critical review,” Int. J. Hydrogen Energy, vol. 84, no. July, pp. 1068–1084, 2024, doi: 10.1016/j.ijhydene.2024.08.295.

[9] F. Vieira et al., “Coconut Waste: Discovering Sustainable Approaches to Advance a Circular Economy,” Sustain. , vol. 16, no. 7, 2024, doi: 10.3390/su16073066.

[10] S. U. Yunusa, E. Mensah, K. Preko, S. Narra, A. Saleh, and S. Sanfo, “A comprehensive review on the technical aspects of biomass briquetting,” Biomass Convers. Biorefinery, vol. 14, no. 18, pp. 21619–21644, 2024, doi: 10.1007/s13399-023-04387-3.

[11] T. Sagdinakiadtikul and N. Supakata, “The application of using rice straw coconut shell and rice husk for briquette and charcoal production,” Int. J. Energy, Environ. Econ., vol. 24, no. 2–3, pp. 283–292, 2016.

[12] R. P. Dewi and M. Kholik, “The effect of adhesive concentration variation on the characteristics of briquettes,” in Journal of Physics: Conference Series, 2020. doi: 10.1088/1742-6596/1517/1/012007.

[13] R. A. M. Napitupulu, S. Ginting, W. Naibaho, S. Sihombing, N. Tarigan, and A. Kabutey, “The effect of used lubricating oil volume as a binder on the characteristics of briquettes made from corn cob and coconut shell.,” in IOP Conference Series: Materials Science and Engineering, 2020. doi: 10.1088/1757-899X/725/1/012010.

[14] M. Amrullah, E. Mardawati, R. Kastaman, and S. Suryaningsih, “Study of bio-briquette formulation from mixture palm oil empty fruit bunches and palm oil shells,” IOP Conf. Ser. Earth Environ. Sci., vol. 443, no. 1, 2020, doi: 10.1088/1755-1315/443/1/012079.

[15] P. Hwangdee, C. Jansiri, S. Sudajan, and K. Laloon, “Physical Characteristics and Energy Content of Biomass Charcoal Powder,” Int. J. Renew. Energy Res., vol. 11, no. 1, pp. 158–169, 2021.

[16] B. V Bot, J. G. Tamba, and O. T. Sosso, “Assessment of biomass briquette energy potential from agricultural residues in Cameroon,” Biomass Convers. Biorefinery, vol. 14, no. 2, pp. 1905–1917, 2024, doi: 10.1007/s13399-022-02388-2.

[17] S. Anis et al., “Arduino-Based Automatic Cutting Tool for Coconut Shell Charcoal Briquettes,” ARPN J. Eng. Appl. Sci., vol. 19, no. 9, pp. 536–540, 2024, doi: 10.59018/052473.

[18] K. Jaito, S. Panya, S. Sripan, T. Suparos, and A. Pichaicherd, “Semi-automatic Charcoal Mixer and Compression,” in Lecture Notes in Networks and Systems, 2024, pp. 76–87. doi: 10.1007/978-3-031-59164-8_7.

[19] A. Prasetyadi, R. Sambada, and P. K. Purwadi, “Alternative method for stopping the coconut shell charcoal briquette drying process,” in E3S Web of Conferences, 2024. doi: 10.1051/e3sconf/202447501007.

[20] A. Brunerová et al., “Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia,” J. Clean. Prod., vol. 436, 2024, doi: 10.1016/j.jclepro.2024.140624.

[21] R. N. Pagani, J. L. Kovaleski, and L. M. Resende, “Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication,” Scientometrics, vol. 105, no. 3, pp. 2109–2135, 2015, doi: 10.1007/s11192-015-1744-x.

[22] A. Arias et al., “Recent developments in bio-based adhesives from renewable natural resources,” J. Clean. Prod., vol. 314, no. September 2021, 2021, doi: 10.1016/j.jclepro.2021.127892.

[23] A. I. Dewantoro, M. A. R. Lubis, D. Nurliasari, and E. Mardawati, “Emerging technologies on developing high-performance and environmentally friendly carbohydrate-based adhesives for wood bonding,” Int. J. Adhes. Adhes., vol. 134, 2024, doi: 10.1016/j.ijadhadh.2024.103801.

[24] A. I. Dewantoro, A. R. Alifia, T. Handini, L. Z. Qolbi, D. A. Ihsani, and D. Nurliasari, “Recent Developments in The Influencing Variables of Hydrodistillation for Enhancing Essential Oil Yields in Indonesia : A Brief Review,” Int. J. Appl. Sci. Smart Technol., vol. 06, no. 02, pp. 301–320, 2024, doi: 10.24071/ijasst.v6i2.9191.

[25] G. Murali, P. Goutham, I. Enamul Hasan, and P. Anbarasan, “Performance study of briquettes from agricultural waste for wood stove with catalytic combustor,” Int. J. ChemTech Res., vol. 8, no. 1, pp. 30–36, 2015.

[26] E. R. D. Padilla, I. C. S. A. Pires, F. M. Yamaji, and J. M. M. Fandiño, “Production and physical-mechanical characterization of briquettes from coconut fiber and sugarcane straw,” Rev. Virtual Quim., vol. 8, no. 5, pp. 1334–1346, 2016, doi: 10.21577/1984-6835.20160095.

[27] H. Saptoadi and M. A. Wibisono, “Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method,” in AIP Conference Proceedings, 2016. doi: 10.1063/1.4943430.

[28] A. Brunerová, H. Roubík, M. Brožek, D. Herák, V. Šleger, and J. Mazancová, “Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example,” Energies, vol. 10, no. 12, 2017, doi: 10.3390/en10122119.

[29] S. Suryaningsih, O. Nurhilal, Y. Yuliah, and C. Mulyana, “Combustion quality analysis of briquettes from variety of agricultural waste as source of alternative fuels,” in IOP Conference Series: Earth and Environmental Science, 2017. doi: 10.1088/1755-1315/65/1/012012.

[30] T. Akbari, “Economic and environmental feasibility study of water hyacinth briquette in Cirata Reservoir,” in E3S Web of Conferences, 2018. doi: 10.1051/e3sconf/20187401001.

[31] T. Syarif, “Biobriquette Characteristics of Mixture of Coal-Biomass Solid Waste Agro,” in IOP Conference Series: Earth and Environmental Science, 2018. doi: 10.1088/1755-1315/175/1/012031.

[32] S. Rodiah, J. L. Al Jabbar, A. Ramadhan, and E. Hastati, “Investigation of mango (Mangifera odorate) sap and starch as organic adhesive of bio-briquette,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1943/1/012185.

[33] A. Tumma, P. Dujjanutat, P. Muanruksa, J. Winterburn, and P. Kaewkannetra, “Biocircular platform for renewable energy production: Valorization of waste cooking oil mixed with agricultural wastes into biosolid fuels,” Energy Convers. Manag. X, vol. 15, 2022, doi: 10.1016/j.ecmx.2022.100235.

[34] B. V Bot, P. J. Axaopoulos, E. I. Sakellariou, O. T. Sosso, and J. G. Tamba, “Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use,” Energies, vol. 16, no. 18, 2023, doi: 10.3390/en16186469.

[35] B. V Bot, P. J. Axaopoulos, O. T. Sosso, E. I. Sakellariou, and J. G. Tamba, “Economic analysis of biomass briquettes made from coconut shells, rattan waste, banana peels and sugarcane bagasse in households cooking,” Int. J. Energy Environ. Eng., vol. 14, no. 2, pp. 179–187, 2023, doi: 10.1007/s40095-022-00508-2.

[36] N. S. Kamal Baharin et al., “Impact and effectiveness of Bio-Coke conversion from biomass waste as alternative source of coal coke in Southeast Asia,” J. Mater. Cycles Waste Manag., vol. 25, no. 1, pp. 17–36, 2023, doi: 10.1007/s10163-022-01539-x.

[37] E. Hambali and H. Hardjomidjojo, “Investigation of Conceptual Supply Chain Design Process of Sustainable Shisha Briquette Production System,” in IOP Conference Series: Earth and Environmental Science, 2024. doi: 10.1088/1755-1315/1358/1/012007.

[38] K. Khaeso et al., “Sustainable conversion of agricultural waste into solid fuel (Charcoal) via gasification and pyrolysis treatment,” Energy Convers. Manag. X, vol. 24, 2024, doi: 10.1016/j.ecmx.2024.100693.

[39] S. Ahmad, K. Winarso, R. Yusron, and S. Amar, “Optimization of Calorific Value in Briquette made of Coconut Shell and Cassava Peel by varying of Mass Fraction and Drying Temperature,” in E3S Web of Conferences, 2024. doi: 10.1051/e3sconf/202449901009.

[40] A. Ashwini, R. Arulvel, M. Shakila, W. S. Fan, and G. H. Kaur, “Characterization of coconut husk briquettes using cow dung as a binder with comparison to Elaeis guineensis,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0229369.

[41] S. Anis et al., “Effect of Adhesive Type on the Quality of Coconut Shell Charcoal Briquettes Prepared by the Screw Extruder Machine,” J. Renew. Mater., vol. 12, no. 2, pp. 381–396, 2024, doi: 10.32604/jrm.2023.047128.

[42] A. Setiawan, K. Khairil, S. Nurjannah, N. Nurmalita, and Z. Fona, “Pine resin utilization as a binding agent for densification of coconut shells and rice husks at various pressures,” in AIP Conference Proceedings, 2023. doi: 10.1063/5.0133273.

[43] V. Sampathkumar, S. Manoj, V. Nandhini, N. J. Lakshmi, and S. Janani, “Briquetting of biomass for low cost fuel using farm waste, cow dung and cotton industrial waste,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 8349–8353, 2019, doi: 10.35940/ijrte.C6616.098319.

[44] N. Kongprasert, P. Wangphanich, and A. Jutilarptavorn, “Charcoal briquettes from Madan wood waste as an alternative energy in Thailand,” in Procedia Manufacturing, 2019, pp. 128–135. doi: 10.1016/j.promfg.2019.02.019.

[45] E. Z. Nunes, A. M. de Andrade, and A. F. Dias Júnior, “Production of briquettes using coconut and eucalyptus wastes,” Rev. Bras. Eng. Agric. e Ambient., vol. 23, no. 11, pp. 883–888, 2019, doi: 10.1590/1807-1929/agriambi.v23n11p883-888.

[46] F. Hamzah, A. Fajri, N. Harun, and A. Pramana, “Characterization of charcoal briquettes made from rubber rods and coconut shells with tapioca as an adhesive.,” in IOP Conference Series: Earth and Environmental Science, 2023. doi: 10.1088/1755-1315/1182/1/012071.

[47] D. S. Nawawi, A. Carolina, T. Saskia, D. Darmawan, and S. L. Gusvina, “Chemical Characteristics of Biomass for Energy,” J. Ilmu dan Teknol. Kayu Trop., vol. 16, no. 1, pp. 44–51, 2018, doi: https://doi.org/10.51850/jitkt.v16i1.441.g367.

[48] D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, and S. Jeelani, “Extraction and characterization of lignin from different biomass resources,” J. Mater. Res. Technol., vol. 4, no. 1, pp. 26–32, 2015, doi: https://doi.org/10.1016/j.jmrt.2014.10.009.

[49] Y. Yuliah, M. Kartawidjaja, S. Suryaningsih, and K. Ulfi, “Fabrication and characterization of rice husk and coconut shell charcoal based bio-briquettes as alternative energy source,” in IOP Conference Series: Earth and Environmental Science, 2017. doi: 10.1088/1755-1315/65/1/012021.

[50] S. Suryaningsih and O. Nurhilal, “Sustainable energy development of bio briquettes based on rice husk blended materials: An alternative energy source,” in Journal of Physics: Conference Series, 2018. doi: 10.1088/1742-6596/1013/1/012184.

[51] R. P. Dewi, “Utilization of sawdust and coconut shell as raw materials in briquettes production,” in AIP Conference Proceedings, 2019. doi: 10.1063/1.5098179.

[52] S. A. Handayani, K. Y. Widiati, and F. Putri, “Quality of Charcoal Briquettes from Sawdust Waste of Ulin (Eusideroxylon zwageri) and Coconut Shell (Cocos nucifera) Based on Variations in Ratio and Particle Size,” in IOP Conference Series: Earth and Environmental Science, 2023. doi: 10.1088/1755-1315/1282/1/012049.

[53] N. Pawaree, S. Phokha, and C. Phukapak, “Multi-response optimization of charcoal briquettes process for green economy using a novel TOPSIS linear programming and genetic algorithms based on response surface methodology,” Results Eng., vol. 22, 2024, doi: 10.1016/j.rineng.2024.102226.

[54] A. S. Erdiyanto, M. H. Asshidiqi, and G. Syachrir, “Bio-Briquettes Production from Spent Coffee Grounds, Composite Organic Waste, and Coconut Shells by Using Carbonization,” in IOP Conference Series: Earth and Environmental Science, 2024. doi: 10.1088/1755-1315/1395/1/012010.

[55] N. Herlina, S. A. Rahayu, Y. A. Sari, and H. Monica, “Utilization of durian peel waste and young coconut waste into biobriquettes as a renewable energy source,” in IOP Conference Series: Earth and Environmental Science, 2024. doi: 10.1088/1755-1315/1352/1/012014.

[56] G. S. Utami and E. Ningsih, “The Impact of Composition and Type of Material on the Characteristics of Fuel Briquttes,” Chem. Eng. Trans., vol. 108, pp. 1–6, 2024, doi: 10.3303/CET24108001.

[57] U. B. Deshannavar, P. G. Hedge, Z. Dhalayat, V. Patil, and S. Gavas, “Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: An energy application,” Mater. Sci. Energy Technol., vol. 1, no. 2, pp. 175–181, 2018, doi: 10.1016/j.mset.2018.07.003.

[58] R. A. Ibikunle, A. F. Lukman, I. F. Titiladunayo, and A.-R. Haadi, “Modeling energy content of municipal solid waste based on proximate analysis: R-k class estimator approach,” Cogent Eng., vol. 9, no. 1, 2022, doi: 10.1080/23311916.2022.2046243.

[59] J. J. S. Dethan, “Evaluation of an empirical model for predicting the calorific value of biomass briquettes from candlenut shells and kesambi twigs,” Adv. Food Sci. Sustain. Agric. Agroindustrial Eng., vol. 7, no. 3, pp. 253–264, 2024, doi: 10.21776/ub.afssaae.2024.007.03.6.

[60] N. Arifin and R. Noor, “Effect of Composition The Mixture of Charcoal Briquettes Made frm Reeds (Imperata cylindrica) to Increase Calory Value,” Jukung J. Tek. Lingkung., vol. 2, no. 2, pp. 61–72, 2016, doi: 10.20527/jukung.v2i2.2315.

[61] K. Vershinina, V. Dorokhov, D. Romanov, and P. Strizhak, “Ignition, Combustion, and Mechanical Properties of Briquettes from Coal Slime and Oil Waste, Biomass, Peat and Starch,” Waste and Biomass Valorization, vol. 14, pp. 431–445, 2022, 10.1007/s12649-022-01883-x.

[62] C. A. Monteiro, G. Cannon, J. C. Moubarac, R. B. Levy, M. L. C. Louzada, and P. C. Jaime, “The un Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing,” Public Health Nutr., vol. 21, no. 1, pp. 5–17, 2018, doi: 10.1017/S1368980017000234.

[63] P. Hemalatha et al., “Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy – A review,” J. Environ. Manage., vol. 332, no. December 2022, p. 117382, 2023, doi: 10.1016/j.jenvman.2023.117382.

[64] P. Duarah, D. Haldar, A. K. Patel, C. Di Dong, R. R. Singhania, and M. K. Purkait, “A review on global perspectives of sustainable development in bioenergy generation,” Bioresour. Technol., vol. 348, no. January, p. 126791, 2022, doi: 10.1016/j.biortech.2022.126791.

[65] S. Nonsawang, S. Juntahum, P. Sanchumpu, W. Suaili, K. Senawong, and K. Laloon, “Unlocking renewable fuel: Charcoal briquettes production from agro-industrial waste with cassava industrial binders,” Energy Reports, vol. 12, pp. 4966–4982, 2024, doi: 10.1016/j.egyr.2024.10.053.

[66] B. Rudiyanto et al., “Utilization of Cassava Peel (Manihot utilissima) Waste as an Adhesive in the Manufacture of Coconut Shell (Cocos nucifera) Charcoal Briquettes,” Int. J. Renew. Energy Dev., vol. 12, no. 2, pp. 270–276, 2023, doi: 10.14710/ijred.2023.48432.

[67] W. Agustina, P. Aditiawati, and S. S. Kusumah, “Myco-briquettes from sugar palm dregs fibre, cassava dregs and coconut shell charcoal with solid substrate fermentation technology,” in IOP Conference Series: Earth and Environmental Science, 2022. doi: 10.1088/1755-1315/963/1/012016.

[68] N. Tripathi, C. D. Hills, R. S. Singh, and C. J. Atkinson, “Biomass waste utilisation in low-carbon products: harnessing a major potential resource,” NPJ Clim. Atmos. Sci., vol. 2, no. 35, 2019, doi: 10.1038/s41612-019-0093-5.




DOI: https://doi.org/10.24071/ijasst.v7i2.12668

Refbacks

  • There are currently no refbacks.









Publisher : Faculty of Science and Technology

Society/Institution : Sanata Dharma University

 

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.