Bubble flow configurations generated by ejector type bubble generator

I Gusti Ngurah Bagus Catrawedarma(1*), Sefri Ton(2), Dadang Dwi Pranowo(3), Fredy Surahmanto(4), Achilleus Hermawan Astyanto(5),

(1) Politeknik Negeri Banyuwangi
(2) Politeknik Negeri Banyuwangi
(3) Politeknik Negeri Banyuwangi
(4) Universitas Negeri Yogyakarta
(5) Universitas Sanata Dharma
(*) Corresponding Author

Abstract


Bubble flow configurations generated by an ejector bubble generator were captured using a high-speed video camera and extracted into several images. The air flow and nozzle diameter were varied during the test in ranges of 0.1-1.5 lpm and 1.17-3.5 mm, respectively. The results reveal that in general the bubble flow structure coming out from the bubble generator is divided into three regions, namely the entrance, bubble swarm, and bubble dispersed region. It is found that there is a higher time delay of bubble production when the air flow and the nozzle diameter decrease. On the other hand, the bubble production time is longer, if the air flow and the nozzle diameter increase.

Full Text:

PDF

References


[1] S. S. Dastgheyb and J. R. Eisenbrey, Microbubble Applications in Biomedicine, in Handbook of Polymer Applications in Medicine and Medical Devices, Elsevier (2014) pp. 253–277, doi: 10.1016/B978-0-323-22805-3.00011-6.

[2] A. Sridharan, J. R. Eisenbrey, P. Machado, E. D. deMuinck, M. M. Doyley, and F. Forsberg, Delineation of Atherosclerotic Plaque Using Subharmonic Imaging Filtering Techniques and a Commercial Intravascular Ultrasound System, Ultrason. Imaging, vol. 35, no. 1, pp. 30–44, Jan. 2013, doi: 10.1177/0161734612469511.

[3] IGNB. Catrawedarma, Deendarlianto, and Indarto, Statistical Characterization of Flow Structure of Air – water Two-phase Flow in Airlift Pump – Bubble Generator System, Int. J. Multiph. Flow, vol. 138, no. 103596, pp. 1–16, 2021, doi: 10.1016/j.ijmultiphaseflow.2021.103596.

[4] I. Catrawedarma, Deendarlianto, and Indarto, The performance of airlift pump for the solid particles lifting during the transportation of gas-liquid-solid three-phase flow : A comprehensive research review, Proc IMechE Part E J Process Mech. Eng., vol. 0, no. 0, pp. 1–23, 2020, doi: 10.1177/0954408920951728.

[5] G. Ligus, D. Zajac, M. Masiukiewicz, and S. Anweiler, A new method of selecting the airlift pump optimum efficiency at low submergence ratios with the use of image analysis, Energies, vol. 12, no. 4, 2019, doi: 10.3390/en12040735.

[6] P. Enany, O. Shevchenko, and C. Drebenstedt, Experimental Evaluation of Airlift Performance for Vertical Pumping of Water in Underground Mines, Mine Water Environ., vol. 40, no. 4, pp. 970–979, 2021, doi: 10.1007/s10230-021-00807-w.

[7] S. Khuntia, S. K. Majumder, and P. Ghosh, Microbubble-aided water and wastewater purification: a review, Rev. Chem. Eng., vol. 28, no. 4–6, Jan. 2012, doi: 10.1515/revce-2012-0007.

[8] C. Liu et al., Effect of microbubble and its generation process on mixed liquor properties of activated sludge using Shirasu porous glass (SPG) membrane system, Water Res., vol. 46, no. 18, pp. 6051–6058, Nov. 2012, doi: 10.1016/j.watres.2012.08.032.

[9] R. Parmar and S. K. Majumder, Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report, Chem. Eng. Process. Process Intensif., vol. 64, pp. 79–97, Feb. 2013, doi: 10.1016/j.cep.2012.12.002.

[10] J. Lu, O. G. Jones, W. Yan, and C. M. Corvalan, Microbubbles in Food Technology, Annu. Rev. Food Sci. Technol., vol. 14, no. 1, pp. 495–515, Mar. 2023, doi: 10.1146/annurev-food-052720-113207.

[11] H. Zhang and R. V. Tikekar, Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation, Postharvest Biol. Technol., vol. 181, p. 111687, Nov. 2021, doi: 10.1016/j.postharvbio.2021.111687.

[12] A. Hashim, O. B. Yaakob, K. K. Koh, N. Ismail, and Y. M. Ahmed, Review of micro-bubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to2015, J. Teknol., vol. 74, no. 5, pp. 105–114, 2015, doi: 10.11113/jt.v74.4650.

[13] N. Dietrich, N. Mayoufi, S. Poncin, N. Midoux, and H. Z. Li, Bubble formation at an orifice: A multiscale investigation, Chem. Eng. Sci., vol. 92, pp. 118–125, Apr. 2013, doi: 10.1016/j.ces.2012.12.033.

[14] W. E. Juwana, A. Widyatama, O. Dinaryanto, W. Budhijanto, Indarto, and Deendarlianto, Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator, Chem. Eng. Res. Des., vol. 141, pp. 436–448, Jan. 2019, doi: 10.1016/j.cherd.2018.11.017.

[15] S. H. Marshall, M. W. Chudacek, and D. F. Bagster, A model for bubble formation from an orifice with liquid cross-flow, Chem. Eng. Sci., vol. 48, no. 11, pp. 2049–2059, 1993, doi: 10.1016/0009-2509(93)80081-Z.

[16] A. Gordiychuk, M. Svanera, S. Benini, and P. Poesio, Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator, Exp. Therm. Fluid Sci., vol. 70, pp. 51–60, 2016, doi: 10.1016/j.expthermflusci.2015.08.014.

[17] J. Huang et al., A visualized study of bubble breakup in small rectangular Venturi channels, Exp. Comput. Multiph. Flow, vol. 1, no. 3, pp. 177–185, Sep. 2019, doi: 10.1007/s42757-019-0018-x.

[18] J. Huang et al., An investigation on the performance of a micro-scale Venturi bubble generator, Chem. Eng. J., vol. 386, p. 120980, Apr. 2020, doi: 10.1016/j.cej.2019.02.068.

[19] C. H. Lee, H. Choi, D.-W. Jerng, D. E. Kim, S. Wongwises, and H. S. Ahn, Experimental investigation of microbubble generation in the venturi nozzle, Int. J. Heat Mass Transf., vol. 136, pp. 1127–1138, Jun. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.03.040.

[20] L. Putri, W. Endra, and F. Martino, Performance of Porous-Venturi Microbubble Generator for Aeration Process, vol. 2, no. 2, pp. 73–80, 2017.

[21] A. Yadav, A. Kumar, and S. Sarkar, Performance evaluation of venturi aeration system, Aquac. Eng., vol. 93, p. 102156, May 2021, doi: 10.1016/j.aquaeng.2021.102156.

[22] A. Yadav and S. M. Roy, An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict the aeration efficiency of venturi aeration system, Smart Agric. Technol., vol. 4, p. 100230, Aug. 2023, doi: 10.1016/j.atech.2023.100230.

[23] L. Zhao, L. Sun, Z. Mo, J. Tang, L. Hu, and J. Bao, An investigation on bubble motion in liquid flowing through a rectangular Venturi channel, Exp. Therm. Fluid Sci., vol. 97, pp. 48–58, Oct. 2018, doi: 10.1016/j.expthermflusci.2018.04.009.

[24] L. Zhao et al., Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles, Int. J. Multiph. Flow, vol. 114, pp. 192–206, May 2019, doi: 10.1016/j.ijmultiphaseflow.2019.02.003.

[25] M. Sadatomi, A. Kawahara, K. Kano, and A. Ohtomo, Performance of a new micro-bubble generator with a spherical body in a flowing water tube, Exp. Therm. Fluid Sci., vol. 29, no. 5, pp. 615–623, 2005, doi: 10.1016/j.expthermflusci.2004.08.006.

[26] D. I. Mawarni et al., Statistical Characterization of Bubble Breakup Flow Structures in Swirl-Type Bubble Generator Systems, ASEAN J. Chem. Eng., vol. 23, no. 1, p. 62, Apr. 2023, doi: 10.22146/ajche.78558.

[27] X. Wang et al., Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator, Chem. Eng. Process. - Process Intensif., vol. 154, p. 108022, Aug. 2020, doi: 10.1016/j.cep.2020.108022.

[28] X. Wang et al., Bubble breakup in a swirl-venturi microbubble generator, Chem. Eng. J., vol. 403, p. 126397, Jan. 2021, doi: 10.1016/j.cej.2020.126397.

[29] X. Xu, X. Ge, Y. Qian, B. Zhang, H. Wang, and Q. Yang, Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow, Chem. Eng. Res. Des., vol. 138, pp. 13–20, Oct. 2018, doi: 10.1016/j.cherd.2018.04.027.

[30] A. Basso, F. A. Hamad, and P. Ganesan, Effects of the geometrical configuration of air–water mixer on the size and distribution of microbubbles in aeration systems, Asia-Pac. J. Chem. Eng., vol. 13, no. 6, pp. 1–11, 2018, doi: 10.1002/apj.2259.

[31] K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, and D. Kobayashi, Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chem. Eng. Sci., vol. 66, no. 14, pp. 3172–3179, 2011, doi: 10.1016/j.ces.2011.02.043.

[32] J. Huang et al., A review on bubble generation and transportation in Venturi-type bubble generators, Exp. Comput. Multiph. Flow, vol. 2, no. 3, pp. 123–134, 2020, doi: 10.1007/s42757-019-0049-3.

[33] A. Yoshida, O. Takahashi, Y. Ishii, Y. Sekimoto, and Y. Kurata, Water purification using the adsorption characteristics of microbubbles, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 47, no. 8 PART 1, pp. 6574–6577, 2008, doi: 10.1143/JJAP.47.6574.

[34] S. Uesawa, A. Kaneko, and Y. Abe, Measurement of void fraction in dispersed bubbly flow containing micro-bubbles with constant electric current method, 2012, doi: 10.1016/j.flowmeasinst.2012.03.010.

[35] D. Deendarlianto, I. Indarto, W. E. Juwana, L. P. Afisna, and F. M. Nugroho, Performance of Porous-Venturi Microbubble Generator for Aeration Process, J. Energy Mech. Mater. Manuf. Eng., vol. 2, no. 2, Dec. 2017, doi: 10.22219/jemmme.v2i2.5054.

[36] L. Sun et al., Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR, Ann. Nucl. Energy, vol. 109, pp. 69–81, Nov. 2017, doi: 10.1016/j.anucene.2017.05.015.

[37] L. Zhao et al., A visualized study of the motion of individual bubbles in a venturi-type bubble generator, Prog. Nucl. Energy, vol. 97, pp. 74–89, May 2017, doi: 10.1016/j.pnucene.2017.01.004.

[38] G. Ding, Z. Li, J. Chen, and X. Cai, An investigation on the bubble transportation of a two-stage series venturi bubble generator, Chem. Eng. Res. Des., vol. 174, pp. 345–356, Oct. 2021, doi: 10.1016/j.cherd.2021.08.022.

[39] J. Huang, L. Sun, M. Du, Z. Mo, and L. Zhao, A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel, Theor. Appl. Mech. Lett., vol. 8, no. 5, pp. 334–344, 2018, doi: 10.1016/j.taml.2018.05.004.

[40] F. Reichmann, M.-J. Koch, and N. Kockmann, Investigation of Bubble Breakup in Laminar, Transient, and Turbulent Regime Behind Micronozzles, in ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels, Cambridge, Massachusetts, USA, Aug. 2017, p. V001T03A001. doi: 10.1115/ICNMM2017-5540.

[41] J. Li, Y. Song, J. Yin, and D. Wang, Investigation on the effect of geometrical parameters on the performance of a venturi type bubble generator, Nucl. Eng. Des., vol. 325, pp. 90–96, Dec. 2017, doi: 10.1016/j.nucengdes.2017.10.006.

[42] D. I. Mawarni, W. E. Juwana, K. A. Yuana, W. Budhijanto, Deendarlianto, and Indarto, Hydrodynamic characteristics of the microbubble dissolution in liquid using the swirl flow type of microbubble generator, J. Water Process Eng., vol. 48, p. 102846, Aug. 2022, doi: 10.1016/j.jwpe.2022.102846.

[43] P. Cramers, A. Beenackers, and van L. Dierendonck, Hydrodinamics and mass transfer characteristics of a loop-venturi reaktor with a downflow liquid jet ejector, Chem. Eng. Sci., vol. 47, no. 13/14, pp. 3557–3564, 1992.

[44] I. Catrawedarma, D. Deendarlianto, and I. Indarto, Statistical Characterization of Flow Structure of Air–water Two-phase Flow in Airlift Pump–Bubble Generator System, Int. J. Multiph. Flow, vol. 138, no. 103596, 2021.

[45] D. H. Sharp, An overview of Rayleigh-Taylor instability, Phys. Nonlinear Phenom., vol. 12, no. 1–3, pp. 3–18, Jul. 1984, doi: 10.1016/0167-2789(84)90510-4.

[46] E. N. Sari, A. Fiveriati, N. Rusti, J. Rulianto, R. Bhiqman Susanto, and I. Catrawedarma, Visual and Pressure Signal Investigations on Bubble Produced by Ejector Bubble Generator, E3S Web Conf., vol. 483, p. 03020, 2024, doi: 10.1051/e3sconf/202448303020.




DOI: https://doi.org/10.24071/ijasst.v7i1.10816

Refbacks

  • There are currently no refbacks.









Publisher : Faculty of Science and Technology

Society/Institution : Sanata Dharma University

 

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.