SEPUTAR MODUL AUTO INVARIAN
(1) 
(*) Corresponding Author
Abstract
A module M is called auto invariant module if M is invariant under any automorphism of its injective envelope, i.e (M) E(M) for every AutR(E(M)). Based on definition, for any pseudo-injective module is auto invariant module. Module M is auto invariant module if and only if for any isomorphism between two essential submodules of M extends to automorphism of M. In this article is discussed about some properties of auto invariant modules such as submodules and decomposition of auto invariant module. The main result are auto invariant modules are coincide with pseudoinjective module and find out sufficient condition of auto invariant modules are quasi-injective modules.
Keywords : injective modules, auto invariant modules, essential submodules.
Full Text:
PDFReferences
Adkins, W.A. dan Weintraub, S,H. 1992. Algebra An Approach via Module Theory. Springer-Verlag New York, Inc.: USA. [1]
Dihn, H.Q. 2005. A Note on Pseudo Injective Modules, Communication in Algebra. Vol 33. No. 2. 361-369. [2]
Dung, N.V. dkk. 1994. Extending Modules, Pitman Research Notes in Mathematics Series 313. [3]
Goodearl, K. R. dan Warfield, R. B. 2004. An Introduction to oncommutative Noetherian Rings. Springer-Verlag New York, Inc., USA. [4]
Lam, T.Y. 1999. Lectures on Modules and Rings. Springer-Verlag New York, Inc., USA. [5]
Lee, T.K. dan Zhou, Y. 2013. Modules which are Invariant under Automorphism of Their Injective Hulss. J. Algebra and Its Aplication, Vol. 12, 2. [6]
Noyan Er, Singh, S., dan Srivastava, A.K. 2013. Rings and Modules which are Stable under Automorphism of Their Injective Hulls. J. Algebra, 379, 223-229. [7]
Singh, S. dan Srivastava, A. K. 2012. Rings of Invariant Module Type and Automorphism-Invariant Modules. Ring Theory and Its Application, Contempt. Math., Amer. Math. Soc., 609, 299-311. [8]
Wisbauer, R., 1991. Foundation of Module and Ring Theor y, Gordon and Breach Science Publisher, Reading, Dsseldorf.[9]
Refbacks
- There are currently no refbacks.