Input Power Measurement System for Driving Motor in Testing Low-Speed Generator
(1) Sanata Dharma University
(2) Sanata Dharma University
(3) Sanata Dharma University
(4) Sanata Dharma University
(*) Corresponding Author
Abstract
Rapid technological advances are affecting the greater use of electrical energy. One of the devices that can generate electrical energy is a generator. Testing the characteristics of the generator required a drive motor to rotate the generator shaft. This research aims to create a three-phase input power measurement system for driving a motor. The method of measuring input power is by measuring the current and voltage of each phase. The power is obtained from the multiplication between current and voltage. The system consists of current sensors, voltage sensors, a signal conditioning circuit, and an Arduino Mega microcontroller for data processing. The system is equipped with a graphical user interface, data storage, and application. The generator input power measurement system has been created and tested. The measurement system has successfully measured the input power of the generator's driving motor, which in real-time is displayed on the trend graph via the graphical user interface on the laptop. The input power measurement data on the three-phase generator and the time data have been successfully stored inside the micro-SD. The average error of the voltage reading is 2% compared to the measurement of the reference voltmeter. The current reading error was 2% compared to the reference meter ampere measurement.
Full Text:
PDFReferences
M. H. Rashid, Electric Renewable Energy System. London: Elsevier Ltd, (2016).
T. Yee Heng, T. Jian Ding, C. Choe Wei Chang, T. Jian Ping, H. Choon Yian, and M. Dahari, Permanent Magnet Synchronous Generator design optimization for wind energy conversion system: A review, Energy Reports, 8 (2022) 277–282.
K. I. Liangliang Wei, Taketsune Nakamura, Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system, Renew. Energy, 147 (1) (2020) 1653–1662.
H. Q. and P. J. Wang Fengxiang, Bai Jianlong, Design features of low speed permanent magnet generator direct driven by wind turbine, in International Conference on Electrical Machines and Systems, Nanjing, China, (2005) 1017–1020.
S. D. Zevalukito, Y. Lukiyanto, and F. R. Prayogo, The Experiment of Wind Electric Water Pumping for Salt Farmers in Remote Area of Demak-Indonesia, Int. J. Appl. Sci. Smart Technol., 4 (2) (2022) 185–194.
P. Ristianto, Generator Ganda Pada Pembangkit Listrik Mikrohidro Dengan Turbin Tunggal, Avitec, 1 (1) (2019) 65–70.
Syafruddin, G. Devira ramady, and R. Ristiadi Hudaya, Rancang Bangun Sistem Proteksi Daya Listrik menggunakan Sensor Arus dan Tegangan berbasis Arduino, Isu Teknol. Stt Mandala, 16 (1) (2021) 36–43.
F. Adi Iskandarianto et al., Rancang Bangun Sistem Monitoring Tegangan, Arus, dan Frekuensi Keluaran Generator 3 Fasa Pada Modul Mini Power Plant Departemen Teknik Instrumentasi, J. AMORI, 1 (2020).
I. M. A. N. and S. M. U. Azmi, Perancangan Sistem Monitoring dan Proteksi Daya Balik untuk Generator 1 kW 3 Fase.
W. S., Teknik Ukur dan Peranti Ukur Elektronik. Jakarta, Gramedia, (1988).
von M. A., Electric Power System. Canada: John Wiley & Sons, Inc., (2006).
Bernadeta Wuri Harini, Martanto, and Tjendro, Comparison of Two DC Motor Speed Observers on Sensorless Speed Control Systems, J. Nas. Tek. Elektro dan Teknol. Inf., 11 (4) (2022) 267–273.
DOI: https://doi.org/10.24071/ijasst.v5i1.6339
Refbacks
- There are currently no refbacks.
Publisher : Faculty of Science and Technology
Society/Institution : Sanata Dharma University
This work is licensed under a Creative Commons Attribution 4.0 International License.