Sugarcane Production Modeling Using Machine Learning in Western Maharashtra
(1) Xavier Institute Of Engineering
(2) Thadomal Shahani Engineering College , Mumbai, India
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
P. Mishra, M. A. G. A. Khatib, I. Sardar, J. Mohammed, K. Karakaya, A. Dash, M. Ray, L. Narsimhaiah, A. Dubey, “Modeling and Forecasting of Sugarcane Production in India”, Sugar tech, 23(6), 1317-1324, 2021.
L. A. Monteiro and P. C. Sentelhas, “Sugarcane yield gap: can it be determined at national level with a simple agrometeorological model?”, Crop and Pasture Science, 68(3), 272-284, 2017.
I. MAHARASHTRA CELL, “Agriculture Contingency Plan for District: KOLHAPUR”, ICAR_CRIDA_NICRA, 2019.
Y. Everingham, J. Sexton, D. Skocaj, G. Inman-Bamber, “Accurate prediction of sugarcane yield using a random forest algorithm”. Agron. Sustain. Dev. 36. 27. Springer Verlag/EDP Sciences/INRA. 2016.
R. G. Hammer, P. C. Sentelhas, J. C. Mariano, “Sugarcane yield prediction through data mining and crop simulation models”. Sugar Tech, 22(2), 216-225. 2020
R. S. Kodeeshwari and K. T. Ilakkiya, “Different types of data mining techniques used in agriculture-a survey”. International Journal of Advanced Engineering Research and Science, 4(6), 237191. 2017.
Shree Datta Shetkari S.S.K. Ltd., Shirol. Available at: http://dattasugar.co.in/
DOI: https://doi.org/10.24071/ijasst.v4i2.4636
Refbacks
- There are currently no refbacks.
Publisher : Faculty of Science and Technology
Society/Institution : Sanata Dharma University
This work is licensed under a Creative Commons Attribution 4.0 International License.