SIMULASI PENAMBATAN MOLEKULER COUMESTROL, DAIDZEIN, DAN GENISTEIN PADA RESEPTOR ESTROGEN ALFA
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(*) Corresponding Author
Abstract
Breast cancer is the most frequent cancer worldwide and covers 16% of total cancer incidence on woman. Two out of three breast cancer prevalence are caused by estrogen receptor alpha (ER ) overexpression. Coumestrol, daidzein, and genistein are known for their ability to interact with some proteins, one of which is ER .
Screening coumestrol, daidzein, and genistein as ligands for ER were mainly completed using PLANTS1.2 and Python-based protein-ligand interaction fingerprinting (PyPLIF) software and protocol developed by Radifar et al. (2013). Tc-PLIF value were then statistically analized to verify whether ligands are active to ER . According to protocol developed by Radifar et al. (2013), the result shown that statistically coumestrol, daidzein, and genistein were not ligand for ER.
Key words : coumestrol, daidzein, genistein, estrogen receptor alpha, molecular docking, PyPLIF
Full Text:
PDFReferences
Anita, Y., Radifar, M., Kardono, L.B.S., Hanafi, M., dan Istyastono, E.P. 2012. Structure-based design of Eugenol Analogs as Potential Estrogen Receptor Antagonists, Bioinformation, 8 (19): 901-906.
Berry, N. B. 2008. Regulation of Estrogen Receptor-Alpha Ubiquitination and Proteasomemediated Receptor Degradation. Dissertation, 4. Indiana University, India.
Deroo, B.J., dan Korach, K.S. 2006. Estrogen Receptors and Human Disease. Journal of Clinical Investigation, 116 (3): 561-567.
Hoper t A.C., Beyer A., Frank K., Strunck E., Wiinsche W., dan Volimer G. 1998. Characterization of Estrogenicity of Phytoestrogens in an Endometrial-derived Experimental Model. Environmental Health Perspectives, 106 (9): 581-586.
Irwin, J.J., dan Schoichet, B.K. 2005. ZINC-A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model. 45: 177-182.
Korb, O., Stutzle T., dan Exner, T. E. 2009. Empirical Scoring Function for Advanced Proteinligand Docking with PLANTS. Journal of Chemical Information and Modeling, 49 (1): 84-96.
Kumar, V. 2007. Buku Ajar Patologi. Ed. 7, Jakarta: EGC, P. 186-187.
Marcou, G., dan Rognan, D. 2007. Optimizing Fragment and Scaffold Docking by use of Molecular Interaction Fingerprints. Journal of Chemical Information and Modeling, 47 (1): 195207.
OBoyle N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., dan Hutchison, G.R. 2011. Open Babel: An Open Chemical Toolbox. J. Cheminform, 3, 33.
Pelkonen, O., Turpeinen, M., dan Raunio, H. 2011. In Vivo In Vitro In Silico Pharmacokinetic Modelling in Drug Development, Clinical Pharmakokinetics, 50 (8): 483-491.
R Development Core Team. 2008. R:A Language and Environment for Statistical Computing, R foundation for Statistical Computing, Vienna.
Radifar, M., Yuniarti, N., dan Istyastono, E. P. 2013. PyPLIF: Python-based Protein-Ligand Interaction Fingerprinting. Bioinformation, 9 (6): 325-328.
Ramli, M. 2003. Management of Breast Cancer. Kumpulan Naskah Ilmiah Muktamar VI PERABOI. Semarang, pp.15-37.
Ten Brink T. dan Exner, T. E. 2009. Influence of Protonation, Tautomeric, and Stereoisomeric States on Protein-ligand Docking results. J. Chem. Inf. Model., 49, 1535-46.
WHO. 2013. Breast Cancer: prevention and control. http://www.who.int/cancer/detection/breastcancer/en/index1.html. Diakses pada Tanggal 23 Desember 2013.
Refbacks
- There are currently no refbacks.