SIMULASI PENAMBATAN MOLEKULER COUMESTROL, DAIDZEIN, DAN GENISTEIN PADA RESEPTOR ESTROGEN ALFA

Agustina Setiawati, Astuti Malyawati Soesanto, Chandra Dewa Nata, Ricardo Kenny Chandra, Florentinus Dika Octa Riswanto, Sri Hartati Yuliani, Enade Perdana Istyastono

Abstract


Breast cancer is the most frequent cancer worldwide and covers 16% of total cancer incidence on woman. Two out of three breast cancer prevalence are caused by estrogen receptor alpha (ER ) overexpression. Coumestrol, daidzein, and genistein are known for their ability to interact with some proteins, one of which is ER .

Screening coumestrol, daidzein, and genistein as ligands for ER were mainly completed using PLANTS1.2 and Python-based protein-ligand interaction fingerprinting (PyPLIF) software and protocol developed by Radifar et al. (2013). Tc-PLIF value were then statistically analized to verify whether ligands are active to ER . According to protocol developed by Radifar et al. (2013), the result shown that statistically coumestrol, daidzein, and genistein were not ligand for ER.

Key words : coumestrol, daidzein, genistein, estrogen receptor alpha, molecular docking, PyPLIF


Full Text:

PDF

References


Anita, Y., Radifar, M., Kardono, L.B.S., Hanafi, M., dan Istyastono, E.P. 2012. Structure-based design of Eugenol Analogs as Potential Estrogen Receptor Antagonists, Bioinformation, 8 (19): 901-906.

Berry, N. B. 2008. Regulation of Estrogen Receptor-Alpha Ubiquitination and Proteasomemediated Receptor Degradation. Dissertation, 4. Indiana University, India.

Deroo, B.J., dan Korach, K.S. 2006. Estrogen Receptors and Human Disease. Journal of Clinical Investigation, 116 (3): 561-567.

Hoper t A.C., Beyer A., Frank K., Strunck E., Wiinsche W., dan Volimer G. 1998. Characterization of Estrogenicity of Phytoestrogens in an Endometrial-derived Experimental Model. Environmental Health Perspectives, 106 (9): 581-586.

Irwin, J.J., dan Schoichet, B.K. 2005. ZINC-A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model. 45: 177-182.

Korb, O., Stutzle T., dan Exner, T. E. 2009. Empirical Scoring Function for Advanced Proteinligand Docking with PLANTS. Journal of Chemical Information and Modeling, 49 (1): 84-96.

Kumar, V. 2007. Buku Ajar Patologi. Ed. 7, Jakarta: EGC, P. 186-187.

Marcou, G., dan Rognan, D. 2007. Optimizing Fragment and Scaffold Docking by use of Molecular Interaction Fingerprints. Journal of Chemical Information and Modeling, 47 (1): 195207.

OBoyle N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., dan Hutchison, G.R. 2011. Open Babel: An Open Chemical Toolbox. J. Cheminform, 3, 33.

Pelkonen, O., Turpeinen, M., dan Raunio, H. 2011. In Vivo In Vitro In Silico Pharmacokinetic Modelling in Drug Development, Clinical Pharmakokinetics, 50 (8): 483-491.

R Development Core Team. 2008. R:A Language and Environment for Statistical Computing, R foundation for Statistical Computing, Vienna.

Radifar, M., Yuniarti, N., dan Istyastono, E. P. 2013. PyPLIF: Python-based Protein-Ligand Interaction Fingerprinting. Bioinformation, 9 (6): 325-328.

Ramli, M. 2003. Management of Breast Cancer. Kumpulan Naskah Ilmiah Muktamar VI PERABOI. Semarang, pp.15-37.

Ten Brink T. dan Exner, T. E. 2009. Influence of Protonation, Tautomeric, and Stereoisomeric States on Protein-ligand Docking results. J. Chem. Inf. Model., 49, 1535-46.

WHO. 2013. Breast Cancer: prevention and control. http://www.who.int/cancer/detection/breastcancer/en/index1.html. Diakses pada Tanggal 23 Desember 2013.


Refbacks

  • There are currently no refbacks.