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Abstract 

The development of Software Defined Networking (SDN) has altered the landscape of 

computer networking in recent years. Its scalable architecture has become a blueprint for the 

design of several advanced future networks. To achieve improve and efficient monitoring, 

control and management capabilities of the network, software defined networks differentiate 

or decouple the control logic from the data forwarding plane. As a result of this, logical 

control is solely centralized in the controller. Due to the centralized nature, SDNs are exposed 

to several vulnerabilities such as Spoofing, Flooding, and primarily Denial of Service (DoS) 

and Distributed Denial of Service (DDoS) among other attacks. In effect, the performance of 

SDN degrades based on these attacks. This paper presents a comprehensive review of several 

DoS and DDoS defense/mitigation strategies and classifies them into distinct classes with 

regards to the methodologies employed. Furthermore, based on the discussions raised, 

suggestions have been made to enhance current mitigation strategies accordingly. 

Keywords: Centralized controller, Software Defined Network (SDN), Denial of Service 

(DoS) attack, Distributed Denial of Service (DDoS) attack, Network security, Mitigation 

strategies 

 

1 Introduction 

Conventional networking infrastructures have great complexity with regards to 

monitoring, control, and management. That is, managing network devices in conventional 

networks poses a tremendous challenge since the configuration of this type of network is 
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based on organizational or supervisory policies. In conventional networks, logic control 

and data forwarding are tightly coupled together [1, 2]. This design architecture inhibits 

flexibility, increases operational cost, and retards innovation irrespective of certain initial 

benefits. Therefore, it implies that conventional networks are thus difficult to maintain 

[3] and cannot serve as the base for developing other emerging technologies like Internet 

of Things (IoT), Cloud, Big Data and many more since adequate bandwidth, adaptability 

and good manageability are required. Due to the paradigm shifts in networking 

architectures over the years, the impact of SDN since its development has adapted to meet 

current networking demands. By decoupling the control plane or logic and the data plane 

[4-6] in SDN architecture as depicted in Fig.1, network scalability, flexibility, and other 

security features are realized to enhance better network performance and management. 

 

Figure 1. SDN architectural layers. 

This design performs a vital task in relation to extensive and high-performance 

computer systems [7]. Based on this architecture, the critical network functions such as 

intrusion detection and routing amongst other functions are essentially handled by the 

linked control and application layer. In the controller, there exist an installed operating 

system (OS) which maps the entire network to a variety of applications and services 

realized in the application layer. The implementation of SDN application enables network 

operators or administrators to have greater control, automation, and optimization over the 

network [8]. A few protocols have been proposed for SDN however, the OpenFlow (OF) 
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is the most used and standardized protocol which coordinates the control plane and the 

data plane via a southbound interface (control channel) [9, 10]. Switches enabled with OF 

have flow tables for storing flow rules for data forwarding. This implies that the switch 

compares the packet header with flow table’s flow rules upon the arrival of a packet. 

Howbeit, in cases whereby no flow rule exists next to the data packet header, a table-miss 

results, and the data packet is transferred to the controller as a Packet-In message. This 

message is then processed by the controller and subsequently, a flow rule with the 

appropriate actions is sent towards the switch [11]. Therefore, it means that the switch’s 

flow table comprise of data forwarding rules transmitted by the controller via the control 

channel. Additionally, it is imperative to note that the status of these rules is temporal 

since limited time is assigned to them after their installation. Thus, they are taken off from 

the flow table after this limited duration. Many recognized industry players in the network 

market like Hewlett-Packard (HP), Computer Information System Company (CISCO) 

etc., are integrating OF in the development of its switches. Although many advantages 

such as scalability, flexibility and manageability of the network have been drawn from 

implementing SDN, the decoupling of the control and data plane exposes the network to 

several or different attacks (conventional and modern) [12, 13]. In reference to these 

security issues DoS attacks or its distributed variant (DDoS) poses the most threat to the 

network in contrast to the other attacks. This implies that a successful DoS or DDoS attack 

has the tendency or ability to entirely disrupt the network by disabling the controller or 

switch [14, 15]. Hence, crippling both the control plane and data plane. In these attacks, 

switches are unable to appropriately transmit packets as required which results in network 

failure and subsequently, a system collapse. Therefore, this paper presents a detailed 

description of DoS and DDoS attacks on SDN infrastructure components, reviews a 

variety of techniques adopted to solve these attacks and provides a comprehensive study 

of these mitigation techniques as well as their benefits and limitations. Outlined in 

sections (2-6) are the most relevant areas that present a complete insight and in-depth 

analysis of DoS and DDoS attacks in SDN, and strategies developed to curb these attacks.  
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2 Operation of the SDN architecture 

The SDN architecture as illustrated in Fig.1 consist of three distinct and decoupled 

layers namely, the Application, Control and Data Forwarding layer. These respective 

layers contain certain vital components that allows for coordination. For instance, the 

application and control layer components coordinate via the Northbound API whilst the 

Southbound API facilitates communication between both the control and data forwarding 

layer. This implies that OpenFlow protocols are the most ubiquitous form of Southbound 

API [16] readily available to facilitate this particular form of interaction. The description 

of the three SDN layers together with the respective functionalities are as follows: 

A. The Application Layer 

It contains several applications (access control, firewall, load balancer, etc.) which 

via the northbound API, interact with the control layer in order to carry out expected tasks. 

The performance of these applications is independent of one another. Hence, they can be 

enabled or disabled based on requirements and network configuration by the 

administrator. In this regard, installing new applications are easy to perform and already 

existing applications can equally be uninstalled without affecting the operation of the 

SDN. 

B. The Control Layer 

This layer comprises of the centralized controller which has an embedded operating 

system (OS) that controls the entire SDN network. Here in this layer, the application 

layer’s specifications are interpreted downwards to the data forwarding layer thus, 

providing an overview of the network. In relation to distributed software defined networks 

it is important to note that the coordination of the different controllers via the Westbound 

and Eastbound interfaces are made possible in this very layer. Aside the controller, the 

control layer houses other components like the network OS, APIs, and the network 

manager to facilitate a more efficient interaction and control of the network. 

C. The Data Forwarding Layer 

It is considered as one of the major blocks of the SDN architect since it is 

comprising of many essential devices like routers, switches, access control and virtual 

switch that supports the operation of the SDN network. Alternatively referred to as the 
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network infrastructure layer, the data forwarding layer employs devices that can be 

connected in several topologies as well as to hosts and servers. Thus, to be able to obtain 

flow rule to ensure data forwarding, every device in this very layer is linked to the 

controller via an exclusive connection. As illustrated in Fig.2, a simplified tree topology 

based SDN architecture is presented.  

 

Figure 2. Simplified SDN architecture. 

This simplified architecture consists mainly of a SDN controller, switches, the 

sending and destination or receiving host. To ensure a successful delivery of data from 

the sending host to the destination host, provided no flow rules are installed, it implies 

that a data packet must be first sent to switch 2 as indicated by process M. Afterwards, a 

packet-in message is then sent from switch 2 to the controller (process N). It is important 

to note that this is dependent on the network configuration, an exclusive connection (link) 

as well as the open flow version [6]. In responds, the controller delivers a packet-out 

message back to switch 2 (process O). Based on the feedback response from the 

controller, data packets are transferred from switch 2 to switch 1 for further actions. Upon 

the arrival of the data packets in switch 1, a similar activity (between switch 2 and 

controller) is carried out again with the controller to enquire with regards to the 
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destination of the data packet. This is indicated by the process Q and R. The controller’s 

response from switch 1 subsequently allows for data packets to be transferred to switch 3 

(process S). The data packets are thereafter sent from switch 3 to the controller and back 

from the controller to switch 3 as shown by process T and U respectively. The data 

packets then received by the destination host via switch 3 as depicted by process V. 

Hence, to install the flow rules, all the processes (M, N, O, P, Q, R, S, T, U, V) must be 

successfully completed to guarantee the reception of data packets by the destination host 

from the sending host. Immediately these flow rules are installed, subsequent data packet 

deliveries are undertaken via only process M, P, S, and V as well as through all the 

respective switches. However, in the event of a role reversal (whereby the destination 

host becomes the sender, and the sending host becomes the destination host) a new flow 

rule must be installed. Therefore, the movement of data packets would be in the opposite 

direction. 

3 DoS and DDoS attacks in SDN 

The centralized nature of the SDN network, exposes it to certain severe attacks and 

security threats. Notable amongst these are Denial of Service and its distributed variant 

(DDoS) [17, 18]. A Denial-of-Service attack is a system-to-system security threat that 

occurs when data packets are flooded towards a targeted system (destination like server, 

web application etc.) in a manner that new flow rules are required for every data packet 

involved. The goal of this kind of attack is to overwhelm the processing ability of the 

targeted system in order to make its resources unavailable. The severity of this attack 

grows on much larger scale with DDoS when spoofed packets containing arbitrary 

addresses (sending and destination addresses) are sent by multiple systems to a targeted 

system in such a way that resources of the network are made inaccessible to authorized 

users. Furthermore, DoS attacks and its variants can be launched to consume especially 

bandwidth and other vital network resources. The repercussion of these attacks on the 

SDN infrastructure is mostly costly as its effect extends to the application, control, and 

data forwarding layer as a result of their evolving nature. 
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Table I. Summarized comparison between DoS and DDoS in SDN 

Denial of Service (DoS) Distributed Denial of Service (DDoS) 

It originates from a single source to 

overwhelm targeted resources 

It emanates from multiple sources to inflict 

damage. 

Rate of attack is slow Rate of attack is very fast 

Less traffic volumes are forwarded to 

targeted resources 

Much larger traffic volumes are forwarded 

since it is a coordinated attack. 

It is relatively easier to detect and 

trace the origin of attack 

It is complex to detect and trace due to many 

disguised attack origins. 

 

4 The Taxonomy of DoS and DDoS attacks 

To provide solutions to the aforementioned attacks upon their detection, it is 

essential to classify them into respective groups so as to easily identify and efficiently 

administer the most appropriate mitigation technique or strategy to aid in combatting 

these attacks. 

 

Figure 3. Taxonomy of DoS/DDoS attacks in SDN architecture. 
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A variety of classifications of the denial of service and its distributed variant is 

presented in Fig.3 based on the attack type, strength, impact, and vulnerabilities of the 

OpenFlow data forwarding switches. 

 

A. Classifying by Attack Type 

The category of DoS/DDoS attacks which primarily seeks to exploit the different 

interfaces (channels or APIs) in SDNs [19-22] by solely forwarding enormous size of 

spoofed data packets with the intention to flood and consume channel bandwidth is 

termed as Bandwidth saturation attacks. As opposed to bandwidth saturation, resource 

saturation attacks mainly aim at overwhelming the resources (physical memory/RAM, 

processor/CPU) of the devices (controllers, switches etc.) in the SDN network. 

Subsequently, successful launch of these attacks results in high latency, total degradation 

of the quality of service (QoS) and unavailability of service to authorized users [23]. 

B. Classifying by Attack Strength 

In reference to the transmission rate of the attack data packets forwarded towards 

the target SDN network, DoS/DDoS attacks can again be categorized based on strength. 

This implies that, given DoS/DDoS attacks with higher attack strength compared with the 

target network, a successful launch causes heavy damage to the switch’s resource and 

simultaneously congesting the southbound API (control channel). More so, with regards 

to attacks possessing lower attack strength than the target SDN, a sizeable amount of the 

bandwidth that has been apportioned to authorized users is hijacked. This type of attacks 

is difficult to detect and are capable of remaining untraceable and active. A typical 

illustration is the attack employing mobile botnet [24]. In Stealthy attacks, attack flows 

are made to last in the flow table for a short idle_timeout value. This makes such attacks 

undetectable since these flow entries quickly expire in the switch before the networks 

defensive mechanisms are triggered. Thus, it imposes a long-term effect (financial loss) 

on the network. 

C. Classifying by Attack Impact 

There are mainly two classes of the impact of DoS/DDoS attacks on different target 

modules. These include the local and global impact. The impact of an attack is termed 

local provided the whole network experiences no malfunction. That is, only hosts that are 
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connected directly or indirectly to the switches in worst-case scenario are affected. This 

type of impacts is mostly undetectable in the network and causes a long-term effect on 

the network. Conversely, the impact of an attack is defined as global when the whole 

network is prone to entirely fail, malfunction and collapse upon its successful launch. 

Therefore, this implies that, authorized users of the network are can neither send nor 

receive data in this regard [25-27]. 

 

 

D. Classifying by Switch Vulnerabilities 

The quest to provide scalability and control in SDN, has resulted in the exposure of 

the OpenFlow switches in the network to be targeted by DoS/DDoS attacks. These 

include flow table overloading, target buffer overflow, altering of flow entries duration 

and open flow agent (OFA) overloading. It is imperative to note that OpenFlow switches 

have limited memory and processing capabilities [28]. When a target switch is flooded 

with data packets (having several addresses) by an immediate host, the flow table is 

searched for each data packet and subsequently forwarded to the controller which installs 

flow rules against the respective packets. However, due to the enormous amount of data 

packets, the flow table is bound to overflow. Thus, in this situation, the controller can 

therefore, not assign new flow rules due to the limited capacity which leads to packet 

drops. Additionally, overloading of the OFA potentially results due to these 

aforementioned points. In the event of a target buffer overflow, forwarding of a complete 

packet causes successive and extensive use of the controller’s resources [29]. This in 

effect increases latency and response time as well as magnifies the rate of packet loss 

[30]. Hence, DoS/DDoS attacks exploits all these raised issues to inflict damage to the 

network. Furthermore, the timeout mechanisms (idle_timeout and hard_time) employed 

in flow entry durations provides an avenue for stealthy DDoS attacks which makes use of 

the minimal durations to send attack flows. Thus, crippling the SDN in a long term. 

5 Mitigating strategies and probable challenges 
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To curb or curtail the DoS/DDoS attacks in Software Defined Networks (SDNs), 

different detection and mitigation strategies have been developed to repel and safeguard the 

network against such threats [31-34]. These mitigation strategies can be grouped as follows: 

 

A. Machine Learning Strategy 

This type of mitigation technique is currently employed in most SDNs as one of the 

effective defense strategies to combat DoS/DDoS attacks. To safeguard the SDN network 

against the aforementioned attacks, in [35], an adversarial deep learning approach detection 

and defense was proposed. This approach employed a Generative Adversarial Network 

(GAN) framework to detect DDoS attacks and utilized adversarial training to make network 

system less sensitive to experimented adversarial attacks. The network traffic was sampled 

and analyzed every one second to achieve almost real-time results (detection response 

time). Although this approach delivered a performance score of about 95.54%, it was 

limited to only common and recent types of DDoS attacks. A Monte Carlo tree search 

(MCTS) algorithm was presented in [36] to generate adversarial examples of cross-site 

scripting (XSS) attacks. In this work, the algorithm is made to allow the generation model 

to proffer reward value that depicts the likelihood of the generative examples bypassing the 

detector. A generative adversarial network (GAN) framework was employed to optimize 

and increase the detection rate of these attacks. The percentage of improvement with respect 

to the accuracy was significant. However, rigorous training is required over several 

iterations to ensure an increase in the detection rate. In [37], a deep neural network model 

to safeguard against adversarial examples was proposed. In this regard, it is evident that 

different machine learning techniques can be used to safeguard software defined networks 

[38-40]. 

 

B. Policy and Resource Management Strategy 

Providing protection against DoS/DDoS attacks requires adaptive policies that would 

render some degree of security for the network. In contrast to conventional networks which 

are managed based on static security policies, it is fundamentally advantageous to define 

dynamic security policies for SDN based on the system properties and network statistics. 

Thus, by configuring and managing the SDNs resources, DoS attacks are avoided. In [41], 
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a two-level balancing solution composed of conventional and load balancing between 

servers and network devices respectively was proposed. This method employs Callophrys 

and efficiently distributes traffic between all alternative routes in the SDN network. In 

effect, this approach increases the survival time of the network during DDoS attacks. A 

software defined-internet of things (SD-IoT) algorithm was proposed in [42] to mitigate 

DDoS attacks. This algorithm efficiently gets the threshold value of the cosine similarity of 

the vectors of the packet-in rate and subsequently determines the occurrence of a DDoS 

attack based on the value. Hence, employing both the SD-IoT framework and algorithm 

enables the blockage and traceability of these attacks. Therefore, the use of policies and 

resource management mitigation strategies equally offer protection for SDNs against 

DoS/DDoS attacks [43-45]. 

 

C. Deception, Blocking/Dropping Strategy 

Creating unpredictable surfaces by altering the properties of the network system is 

another mechanism employed to guard against adversarial DoS/DDoS attacks. Blocking 

entails obstructing the port carrying the malicious host and extends to dropping such 

traffics. These strategies are, therefore, key to ensuring the safety and reliability of software 

defined networks. A DaMask architecture was presented in [46] as a control structure to 

enable efficient attack reactions in software defined networks and cloud-based computing. 

It embodies an anomaly detection module for matching flow packets with attack patterns 

and a mitigation module to facilitate in proffering the right solution upon detection of a 

DoS/DDoS attack. To surmount DoS attacks and it distributed variant, [47] suggested a 

distributed Firewall having Intrusion Prevention Security (IPS) capabilities. Here, incoming 

data packets are acted upon based on the firewall statistics and flow rules embedded in the 

switch. Detection of any malicious anomaly leads to the forwarding of packets to the 

controller for detailed analysis to be performed. If an attack is confirmed, the installed 

firewall rules immediately drop the malicious traffic. Several blocking strategies have been 

proposed in [48-50] to mitigate DoS/DDoS attacks in SDN infrastructure. Therefore, this 

strategy can be adopted to effectively safeguard the network against these attacks. However, 

it is imperative for the system to also distinguish clearly between false alarms (false cases 

of DoS/DDoS attacks) and real attacks to avoid blocking or dropping of legitimate users. 
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D. Delaying and Collaborative Strategy 

Safeguarding a software defined network against DoS/DDoS attacks can be achieved 

by an individual network or through a collaboration between multiple networks. More 

importantly, individual networks employ delaying as a strategy to mitigate denial of service 

attacks. In contrast to deception and blocking strategy, delaying approach keeps malicious 

traffics but under controlled circumstances. This implies that low trust-value is assigned to 

this type of traffic to allow some degree to communication with the network but at a very 

limited rate. Regardless of this mitigation approach, malicious traffic however consumes 

some amount of network resources in the long term. In relation to this subject, different 

works have been conducted to provide solutions to effectively optimize delay strategies to 

protect SDNs against the attack. In [51], every new and incoming data packet is assigned 

with a trust or priority value which is internet protocol based. Data packets are prioritized 

on mainly the trust value and are subsequently forwarded to the controller as packet 

headers. Thus, in this manner, DDoS attacks are well mitigated by efficiently utilizing the 

resource management switch. Other alternative methods have been proposed as 

FlowRanger in [52] to enable network controllers to effectively prioritize the mitigation 

solution. This is achieved with a trust management, queuing management and request 

scheduling modules to allocate to every flow request a trust or priority value, maintain 

numerous queues with several priority and employ weighted round-robin for processing 

queues respectively. In view of this, delaying can therefore be classified as an alternative 

measure to guard software defined networks against DoS/DDoS attacks [53-58]. Table II. 

presents an overview of the discussed mitigation strategies proposed in different related 

works for detection and safeguarding of the software defined network against DoS/DDoS 

attacks. 

 

 

 

 

Table II. Overview of different DoS/DDoS mitigation strategies in SDN 
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Author 

Type of 

mitigation 

strategy 

Area of 

focus 
Overview 

[59] Machine 

Learning 

Control and 

Data 

Forwarding 

Layer 

Presented a Woodpecker with an effective 

Heuristic algorithm for mitigating DDoS 

attacks (Link Flooding Attach) 

[60] Machine 

Learning 

Control 

Layer 

Proposed a deep learning approach to 

achieve greater detection accuracies of 

DDoS attacks in real time and with the aim 

to reduce SDNs resource dependency 

[61] Machine 

Learning 

Application 

Layer 

Suggested a blockchain framework known 

as Cochain-SC having an intra and inter-

domain strategies to realize real time 

detection and mitigation of DDoS attacks. 

[62] Machine 

Learning 

Control 

Layer 

Developed a mitigation strategy based on 

the flow table’s hit rate gradient (time 

feature) and adopted a real time detection 

and defense against DDoS attacks by 

employing a back propagation neural 

network. 

[63] Machine 

Learning 

Application 

Layer 

Presented a blockchain -based framework 

(Cochain-SC) with intra and inter-domain 

DDoS mitigation. The respective domains 

achieved real time detection and mitigation 

of illegitimate flows inside the domain as 

well as facilitate the collaborative among 

SDN-based domain peers. 

[64] Machine 

Learning 

Data 

Forwarding 

Layer 

Proposed an Ethereum blockchain which 

utilized smart contracts to defend SDN 

against DDoS attacks across several 

domains via detection algorithms and filter 

systems. 

[65] Policy and 

Resource 

Management 

Control 

Layer 

Presented a random route mutation (RRM) 

that puts together game theory and 

constraints satisfaction optimization to get 

the most preferred strategy for DoS/DDoS 

attack deterrence. 

[66] Policy and 

Resource 

Management 

Data 

Forwarding 

Layer 

Suggested an AVANT-GUARD to guard 

against resilient TCP SYN flood. Based on 

actuating triggers, the detection, response, 

and control of the traffic rate are thereby 

mitigated. 
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[67] Policy and 

Resource 

Management 

Control and 

Application 

Layer 

Offered a Dossy application which operates 

in the application layer to curtail DoS 

attacks. This approach employed flow and 

packet-in analysis to deliver messages to 

detect and prevent DoS attacks in SDN 

[68] Policy and 

Resource 

Management 

Control and 

Data 

Forwarding 

Layer 

Presented a lightweight DoS detection and 

mitigation system known as FlowFence. It 

essentially comprises of switches and 

controller for detection of traffic congestion 

and bandwidth flows control respectively. 

[69] Policy and 

Resource 

Management 

Control and 

Application 

Layer 

Proposed a framework called 

FloodDefender to defend the controller 

against DDoS attacks. Mitigation is 

achieved by the utilization of packet-in 

message for attack detection, filtering of 

packets and efficient management of flow 

rules. 

[70] Policy and 

Resource 

Management 

Control 

Layer 

Suggested an SDNManager that mainly 

expects constant monitoring of flow 

information and future estimation of 

demands of bandwidth in the SDN. It 

therefore implies that, penalization of flows 

exceeding required estimates exist to 

facilitate mitigating the network against 

attacks. 

[71] Policy and 

Resource 

Management 

Control 

Layer 

Presented a mechanism to mitigate DDoS 

attacks by dropping packets dependent on 

the packet-in thresholds. In this regard, 

packets and bytes counts are the required 

parameters or statistics for the controller to 

ensure detection of such attacks. 

[72] Policy and 

Resource 

Management 

Control 

Layer 

Recommended an effective mechanism to 

guard against DDoS attacks by monitoring 

the fairness of packet-in messages or packet 

ratios and distribution of hosts. 

[73] Policy and 

Resource 

Management 

Control and 

Data 

Forwarding 

Layer 

Addressed low-rate DoS attacks by 

installing and monitoring flow rules on 

respective switches to facilitate detection of 

low-rate TCP attacks. Thus, reduction in 

bandwidth and mitigation on ingress 

switches were proposed as a solution to this 

type of attack via constant monitoring. 

[74] Blocking and 

dropping 

Control 

Layer 

Proposed the implementation of SLICOT in 

the controller to safeguard SDN against 

TCP SYN flooding attacks. This was 
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achieved by installing provisional 

forwarding rules in TCP handshaking 

processes and after request validations. 

Thus, its capability of detecting and 

blocking malicious requests that would 

potential jeopardize the SDN. 

[75] Blocking and 

Dropping 

Application 

and Data 

Forwarding 

Layer 

Presented an architecture that employs 

OpenFlow and sFlow to detect and mitigate 

DoS attacks. Detection of anomalies are 

done with an entropy-based algorithm and 

dependent on sampled data from the sFlow. 

Hence, alteration of the flow table and its 

entries ensures the safety of SDN by 

blocking malicious traffic. 

[76] Blocking and 

Dropping 

Control 

Layer 

Suggested a vital framework called 

NIMBUS for detecting DoS/DDoS attacks 

by thoroughly analyzing traffics. This 

implies that malicious traffic is blacklisted 

or rate limits applied with auto scalable 

VMs to ensure effective mitigation. 

 

[77] Blocking and 

Dropping 

Control 

Layer 

Presented a link flooding attacks 

(LFA)Defender which explores or inspects 

the SDN to recognize probable target links, 

reroute traffics in events of congestion and 

blocks harmful traffics. This provides the 

requisite flexibility and economic 

efficiency. 

[78] Blocking and 

Dropping 

Control 

Layer 

Proposed an architecture referred to as 

RADAR to enable detection of DDoS 

attacks by utilizing adaptive correlation 

analysis. Thus, by employing a port-based 

max-min fairness approach, malicious 

traffics are dropped via analysis 

[79] Blocking and 

Dropping 

Data 

Forwarding 

Layer 

Incorporated the data plane in the defense 

mechanism to eliminate dependency on the 

network controller in the control layer. In 

this regard, detection of DoS/DDoS attacks 

is made by propagating alarm across the 

SDN using probe packets. As a result, 

mitigation measures (traffic dropping, IP 

obfuscation) were adopted to handle these 

malicious traffics. A typical example is 

with respect to FastFlex. 
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[80] Blocking and 

Dropping 

Data 

Forwarding 

Layer 

Proposed a policy enforcement engine 

known as Poseidon to defend DDoS 

attacks. This utilized modularized defense 

primitives to throttle denial of service 

attacks and its distributed variant in SDN  

[81] Blocking and 

Dropping 

Application 

and Data 

Forwarding 

Layer 

Introduced a new security plane along with 

the data plane. Imperatively, this is parallel 

to the control plane. Pyretic is used by 

switches in the data plane to forward 

packets to detection engines. To throttle 

DDoS attacks, these engines forward the 

right rules to the controller for insertion into 

switches. Hence, effective for safeguarding 

SDN against malicious attacks. 

[82] Blocking and 

Dropping 

Application 

and Data 

Forwarding 

Layer 

Proposed a transparent intrusion detection 

system (TIDS) which offers a distributed 

and scalable remedy against DDoS attacks. 

To achieve detection of intruders and 

mitigating low-level DoS attacks, a polling 

processor is employed to perform analysis 

on flows, recognize anomalies and forward 

modified requests of flows to realize the 

blocking of malicious addresses. 

[83] Delaying and 

Collaborative 

Strategy 

Control 

Layer 

DrawBridge was proposed to facilitate 

between ISPs and hosts an end-to-end 

effective/reliable communication. 

Implemented in SDN as a controller, it 

forwards flow rules to switches in the ISP 

and interacts with other controllers in the 

ISP upstream. Thus, it enables filtering of 

malicious DDoS traffics via thorough 

verification, processing and deployment of 

flow rules. 

[84] Delaying and 

Collaborative 

Strategy 

Control 

Layer 

Developed an SDN controller-to-controller 

based protocol for collaborative defense 

against DDoS attacks. This protocol 

enables secure interaction and exchange of 

attack information between established 

SDN controllers. Thus, this allows for 

effective monitoring, alert of malicious 

paths and filtering of traffics close to the 

source attack 

[85] Delaying and 

Collaborative 

Strategy 

Application 

and Control 

Layer 

Proposed a FireCol architecture as an 

effective solution against flooding DDoS 

attacks based on early detection. The 
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architecture incorporates intrusion 

prevention systems (IPSs) for creating 

virtual shield rings around hosts. This 

imperatively ensures the exchange of vital 

traffic information to safeguard end users 

and the entire network’s infrastructure. 

[86] Deception 

and Moving 

Target 

Strategy 

Control 

Layer 

Proposed a smart moving target defense 

linked proactive and reactive virtual 

machine migration scheme.  This scheme 

improves or optimizes the migration 

frequency to reduce resource wastage and 

curb attack impacts. In this regard, 

protection against DDoS attacks is 

improved by employing false reality 

pretense to repel malicious attacks and 

study attack patterns. 

[87] Deception 

and Moving 

Target 

Strategy 

Control 

Layer 

Presented a controller placement 

camouflage solution to effectively alter the 

attack surface in moving target defense. A 

stochastic game (Zero-Sum) is used to lead 

the MTD solution between the system 

defender and attacker. Thus, this technique 

enables real time risk evaluation of network 

vulnerabilities based in a Bayesian Attack 

Graph and constantly shifts the location of 

the SDN controller.  

[88] Deception 

and Moving 

Target 

Strategy 

Control 

Layer 

Introduced an agile architectural framework 

to exploit SDN and NFV by applying 

moving target defense and network 

forensics techniques. Interested traffics are 

stored by the VCP framework and 

forwarded to the SDN controller for 

thorough analysis. Route mutation was 

employed to guard against DDoS attacks by 

obfuscating the network’s topology 

information. Thus, an effective MTD 

strategy for protecting SDN although much 

storage of traffic data is required.  

[89] Deception 

and Moving 

Target 

Strategy 

Control 

Later 

Addressed protection against DDoS attacks 

by leveraging MTD security in SDN 

enabled cloud infrastructure. Reduction in 

frequency and selection of location of target 

mobility across heterogeneous VM based 

on the probability of the attack was the 

focal point for subsequent framework 
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development. This proved effective based 

on low success rate of attacks.  

[90] Deception 

and Moving 

Target 

Strategy 

Control 

Layer 

Developed an SDN-based MTD system 

known as CHAOS to obfuscate the attack 

surfaces to enhance the uncertain and 

unpredictable nature of the environment. 

This is best achieved with the proposed 

Chaos Tower Obfuscation algorithm. 

Therefore, this offers several degrees of 

obfuscation for hosts thus, enabling the 

realization of moving target defense in 

SDN controller based networks. 

 

Upon reviewing DoS/DDoS attacks, its effects on the SDN architecture (layers) and several 

mitigation strategies adopted to guard networks against them, it is vital to find an optimal 

and robust security that guarantees protection for legitimate users from all forms of 

vulnerabilities. Practically, this is very essential for integration on other modern networks 

or frameworks like the SDN-IoT networks [91-93], smart grid security networks [94-100], 

industrial networks [101-105], enterprise networks [106-109], backbone networks [110-

115], 5G networks [116-118], and software defined network optical networks (SDON) 

[119, 120]. Therefore, future works can incorporate certain combinations of the reviewed 

mitigation or defense strategies with modules capable of: 

1. Efficiently detecting real-time attacks with optimal response time 

2. Effective processing of data packets  

3. Adding extra traffics to enable effective verification 

4. Ensuring the long-term reliability of the SDN 

Hence, it is worth noting that, the quantity and quality of network traffics are essential 

parameters for thorough examination and assessment of the discussed defense or mitigation 

strategies in SDN. 

6 Conclusions 

The scalability, control, and manageability of SDNs offer network developers a 

flexible platform to fabricate and run self-made protocols without changing existing 

hardware in the network. This dynamism had made it a preferred choice with regards to 

current and future network developments. Considering the drawbacks in reference to 
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security in SDNs, this paper presented a detailed review of potential mitigation strategies 

to tackle most well-known DoS and DDoS attacks. Furthermore, based on the discussed 

methods, it is thus essential to enhance current mitigation strategies more collaboratively to 

ensure faster and efficient attack detection, maximum security, reliability and longevity to 

SDN infrastructures. 
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