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Abstract 

This paper proposes Spine-CNN, a deep learning model for the detection of spinal 

deformities that can assist orthopedic doctors as a reliable tool for diagnosis. This technology 

promises to dramatically simplify the diagnostic process, freeing valuable time, and resources 

for healthcare professionals. To achieve this objective, a dataset of spine deformity X-ray 

images was curated from the PhysioNet database. The Spine-CNN was specially designed 

for detecting the spine deformity by incorporating features to leverage its ability to extract 

intricate features from radiographic images and by fine tuning the hyperparameters to 

properly train the model. Model performance was evaluated using standard metrics. Results 

from the Spine-CNN demonstrated promising performance in detecting spinal deformities. 

The model achieved an accuracy of 74%, with precision, recall, and F1-score values of 77%, 

70%, and 73% respectively.  Specifically, this research work introduces a Spine-CNN that 

underscore the potential of deep learning techniques to revolutionize diagnostic practices in 

orthopedic medicine, leading to improved treatment outcomes and patient care. 

Keywords: Computer-aided detection, Convolutional neural network, Image classification, 

Spine Deformation, X-ray imaging 

 

1 Introduction 

Malformations of the spine, for instance, scoliosis or kyphosis, are physical 

impairments that affect the patient's health situation and his or her quality of life. Spinal 

deformities inevitably lead to discomfort, if left untreated, to life-threatening 

complications. Just counting injuries to the spinal cord, between 250,000 and 500,000 
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people are affected per year worldwide. The lethality of injuries to the spine is two to five 

times higher than it is without injuries, in low and middle-income countries even higher. 

The orthopedist must recognize these deformities early and make a precise diagnosis to 

initiate effective medical treatment.  

The evaluation of spine deformity in conventional form leans mainly on 

straightforward measurements and radiographic analysis. Long-term methods present few 

obstacles in the direction of precision and performance. Straight measurements are partly 

subject to careless fallacy, and radiographic inspection requests particular resources and 

skills. Additionally, they tend to be more time-intensive than these approaches potentially 

slow up correct diagnosis and effective administration. 

Over the last few years, deep learning has made major strides, particularly with 

Convolutional Neural Networks (CNNs). This technology has shown great promise in 

taking up medical image analysis. CNNs are artificial neural networks that are particularly 

well suited to pulling out characteristics from complex visual data. This talent makes them 

good candidates to look for structural irregularities in medical images, like those used in 

diagnosing spinal deformities.  

The aim of this research is to improve the accuracy and swiftness of spine deformity 

detection by leveraging the capabilities of CNNs. Employing a dataset made up of 

medical imaging, the Spine-CNN trained in this research offers the possibility of 

establishing a resilient system. Although this is accurate, various other crucial 

determinants are necessary when deciding on the course of treatment. A patient's global 

health, current condition, and the extent to which the curvature has altered their breathing 

are all significant facets. Additionally, it is important to recommend and develop 

additional methods that aid in diagnosing scoliosis abnormalities with a high level of 

accuracy. 

Several works have represented strategies that rely on various geometric models 

centered on depicting spinal curvature. These models lead to a detailed and exact 

depiction of spinal shape and flexure, benefitting diagnosis and treatment of spinal 

deformity. By fusing these geometric models with the power of CNNs, this work enabled 

a holistic and convincing framework for spine deformity detection and treatment. 

The primary contributions of this research paper are as follows: 
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1. Implementation of Spine-CNN, a deep learning model to effectively categorize 

spinal deformities from image datasets, presenting a novel approach to addressing 

a critical medical challenge  

2. A meticulously curated dataset is used that encompasses diverse images 

representing various spinal disorders, facilitating robust model training to tackle 

real-world complexities and enhance performance in handling clinical scenarios. 

3. Enhancement of model performance through rigorous hyperparameter 

optimization, ensuring optimal training and fine-tuning of Spine-CNN for 

accurate spine deformity classification. 

4. A comprehensive evaluation of the model's effectiveness by employing 

sensitivity, specificity, and precision calculations, providing insights into its 

ability to precisely classify spinal irregularities. 

5. To leverage the capabilities of CNNs to speed up accurately diagnosing spine 

deformities, with a vision to develop a computerized diagnostic system equipped 

with extensive medical image data, thereby empowering CNNs to achieve 

advanced diagnostic capabilities. 

The following is the arrangement of the upcoming sections of the paper: A concise 

synopsis of the literature study is given in Section 2. The employed methodology is 

explained in Section 3. Section 4 highlights the obtained results together with its analysis. 

The conclusions from the study's findings and the direction of future research are 

summarized in Section 5. 

 

2 Literature Review 

This section presents a brief overview of spine deformity detection strategies in a 

concise way, covering both conventional image processing methods and the most recent 

developments in deep learning. The objective is to present a comprehensive analysis of 

the current literature, highlighting the advantages and disadvantages of different strategies 

to provide insightful background information for the selected methodology. 

Zhang L. et al. [1] performed human X-ray image spine model positioning based 

on an R-CNN. They concentrated on the placement, detection, and segmentation of 
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human radiograph spine models using Mask R-CNN, as well as object detection and 

image segmentation. They achieved good accuracy by concentrating on radiographic 

spine model location while considering application instructions. Lin. H. [2] implemented 

a multilayer feed-forward, back-propagation (MLFF/BP) artificial neural network (ANN) 

to identify the classification patterns of the scoliosis spinal deformity using X-ray images. 

He achieved fairly good accuracy.  Lee et al. [3] created a CNN model to diagnose CSM 

using only one lateral cervical spine radiograph, with an acceptable diagnostic accuracy. 

However, the study was limited by the small number of subjects with MR images. Kim 

et al. [4] proposed a technique for analyzing a moire image of a human back in a 2-D way 

to automate the primary screening of spinal deformity detection based on neural network. 

Saravi et al. [5] concluded that AI-based decision-making tools in spine surgery utilize 

multimodal data to predict outcomes and detect disease patterns, requiring collaboration 

between healthcare providers and industries to implement good machine learning 

principles. Leveraging techniques like Federated Learning and continuous updates with 

new data are essential for safe integration into clinical practice. Mezghani N. et al. [6] 

studied Computer applications employing fuzzy clustering, support vector classifiers, 

artificial neural networks (ANN), and surface topography algorithms aid in managing 

Adolescent Idiopathic Scoliosis (AIS) by regrouping similar spine geometries, predicting 

Cobb angles accurately, and enhancing classification reliability. Salehi et al. [7] applied 

the deep convolutional neural networks (CNNs) in computer-aided diagnosis of three 

types of disc herniation disease based on lumbar axial MR Images. Pinheiro et al. [8] 

proposed and validated a novel computerized methodology for detecting elliptical 

patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. 

Hieu T. Nguyen et al. [9] aimed at developing and evaluating a deep learning-based 

framework, named VinDr-SpineXR, for the classification and localization of 

abnormalities from spine X-rays. B. L. Qasthari et al. [10] used a pre-trained model 

VGG19 to categorize histological images of lung and colon cancer into five labels to aid 

medical professionals' categorization job. 

The literature review revealed several potential designs for identifying spinal 

deformities, with an emphasis on the CNN model. While some research has produced 

promising results in the recognition and categorization of spinal deformities, other studies 
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encountered challenges with achieving greater accuracy. Pretrained models and transfer 

learning techniques have shown potential for improving performance across multiple 

tasks. 

3 Methodology 

This section presents the description of the dataset, Spine-CNN architecture, the 

model parameters, and performance evaluation metrics. 

 

Dataset 

This research work uses PhysioNet dataset contributed by Pham et al. [11] supported 

with comma-separated values (CSV) labels for the spinal X-ray DICOM images with a 

total of 10466 images. It has 13 types of abnormalities and contains basic demographic 

information. The dataset was divided into training, testing and validation sets of images, 

with 8389 images in the training dataset and 2077 in validation and testing.  

All collected images are organized into two separate folders based on their 

respective classes: "Deform" and "Normal". This structuring facilitates the efficient 

handling and processing of data during model development. The dataset is split into three 

subsets: training, testing, and validation sets - 80% of the data is allocated for training and 

20% of the data is reserved for testing and validation. 

 

Model Architecture of Spine-CNN 

The model summary of the Spine-CNN architecture is shown in Table 1.  

 

Table 1. Architecture of Spine-CNN 

Layer (type) Output Shape Param 

conv2d (Conv2D) (None, 222, 222, 16) 160 

batch_normalization (BatchNormalization) (None, 222, 222, 16) 64 

activation (Activation) (None, 222, 222, 16) 0 

max_pooling2d (MaxPooling2d) (None, 111, 111, 16) 0 

conv2d_1 (Conv2D) (None, 109, 109, 32) 4640 
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batch_normalization_1 (BatchNormalization) (None, 109, 109, 32) 128 

activation_1 (Activation) (None, 109, 109, 32) 0 

max_pooling2d_1 (MaxPooling2D) (None, 54, 54, 32) 0 

conv2d_2 (Conv2D) (None, 52, 52, 32) 9248 

batch_normalization_2 (BatchNormalization) (None, 52, 52, 32) 128 

activation_2 (Activation) (None, 52, 52, 32) 0 

dropout (Dropout) (None, 52, 52, 32) 0 

max_pooling2d_2 (MaxPooling2D) (None, 26, 26, 32) 0 

conv2d_3 (Conv2D) (None, 24, 24, 64) 18496 

batch_normalization_3 (BatchNormalization) (None, 24, 24, 64) 256 

activation_3 (Activation) (None, 24, 24, 64) 0 

dropout_1 (Dropout) (None, 24, 24, 64) 0 

max_pooling2d_3 (MaxPooling2D) (None, 12, 12, 64) 0 

flatten (Flatten) (None, 9216) 0 

dense (Dense) (None, 256) 2359552 

batch_normalization_4 (BatchNormalization) (None, 256) 1024 

activation_4 (Activation) (None, 256) 0 

dropout_2 (Dropout) (None, 256) 0 

dense_1 (Dense) (None, 1) 257 

Total params: 2393953 (9.13 MB)   

Trainable params: 2393153 (9.13 MB)   

Non-trainable params: 800 (3.12 KB)   

 

It consists of the following layers. 

A. Convolutional Layers (Conv2D):  

Four convolutional layers are employed to extract hierarchical features from input 

images. These layers use 3x3 filters with varying depths (16, 32, 32, 64) to capture 

different levels of abstraction. 

B. Batch Normalization Layers:  
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The training process is stabilized and accelerated by interleaving convolutional 

layers with batch normalization layers. They normalize activations, improving gradient 

flow and mitigating the vanishing gradient problem. 

C. Activation Layers (Activation):  

ReLU activation functions introduce non-linearity, enabling the model to learn 

complex patterns in the data. They follow each convolutional layer to introduce non-linear 

transformations. 

D. Max Pooling Layers (MaxPooling2D):  

Max pooling layers downsample feature maps, reducing computational 

complexity and prevent overfitting. 2x2 pooling windows are used to retain the most 

salient features. 

E. Dropout Layer:  

A total of three dropout layers are utilized. The Convolution layer consists of two 

dropouts at a probability of 0.2, while the dense layer is equipped with a single dropout 

at a probability of 0.3. 

F. Flatten Layer (Flatten):  

The flatten layer comes after the last max pooling layer. It transforms the 2D 

feature maps into a 1D vector, so that they can be fed into the fully connected layers. 

G. Fully Connected Layers:  

The model contains two dense layers for classification, with the initial dense layer 

possessing 256 neurons that can capture high-level features and the last layer consisting 

of only a single neuron aimed at tasks focused on binary classification, thereby outputting 

classes. The model is made up of 2,393,953 parameters.  

The process flow of the spine deformation detection of Spine-CNN is presented 

in Fig. 1, where process starts with the input X-ray image, which is preprocessed by 

resizing to 224x224 pixels and rescaling pixel values for normalization. This 

preprocessed image is passed through the Spine-CNN Model explained above which uses 

a sigmoid activation function to output a probability score, which is thresholded to 

classify the image as either "Deform" (indicating a spinal deformity) or "Normal" 

(indicating no deformity). 
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Figure 1. Flow diagram for Spine deformity detection 

 

3.3 Model parameters 

The following parameters are used in the Spine-CNN model:  

● Epochs: 50 

● Batch Size: 64 

● Loss Function: Binary Cross-Entropy 

● Optimizer: Adam  

● Learning rate = 0.001 

Learning rate scheduler: ReduceLROnPlateau (monitor=’val_loss’) 

 

Evaluation metrics 

While evaluating a Convolutional Neural Network (CNN) model for image 

classification, several metrics are used to assess its performance. A brief description of 

these metrics is presented below: 

1. Accuracy: 

Accuracy is defined as the proportion of accurately identified instances to all 

instances as shown in equation 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
    (1) 
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2. Precision: 

The precision metric, as described in equation 2, quantifies the percentage of true 

positive predictions among all the positive predictions generated by the model. It shows 

that the model can prevent false positives. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
             (2) 

  

3. Recall (Sensitivity):  

The percentage of true positive predictions among all actual positive data 

instances is known as recall. It illustrates how the model may prevent false negatives by 

capturing all positive cases as depicted in equation 3. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   (3) 

 

4. F1-Score:  

The F1-score, as described in equation 4, is the harmonic mean between recall and 

precision. It offers an equitable assessment of a model's effectiveness, particularly in 

cases where the dataset exhibits class imbalances. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 

 

5. Confusion Matrix:  

A tabular overview of the model's predictions compared to the actual class labels 

is given by a confusion matrix. It allows for a more in-depth analysis of the model's 

performance, showing the counts of true negatives, true positives, false negatives, and 

false positives. 

 

6. Receiver Operating Characteristic Curve (ROC) and Area Under the Curve (AUC):  

ROC curves illustrate how threshold values alter the trade-off between the true 

positive rate (sensitivity) and the false positive rate (1-specificity). The model's overall 
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performance is represented by a single scalar value, or AUC, which summarizes the ROC 

curve. 

 

4 Results 

This section reports the results obtained by Spine-CNN. Table 2 presents the results 

of the model after 50 epochs of training.  

Accuracy: The accuracy shows overall accuracy of the model's predictions. The 

model achieves an accuracy of 74%, suggesting that it correctly identifies spinal 

deformities approximately three-fourths of the time. Although accuracy is a valuable 

metric, it should be read in conjunction with other metrics to provide a complete picture 

of the model's performance. 

Precision: The percentage of true positive predictions among all positive 

predictions the model made is referred to as precision. The model's precision is 77%, 

meaning that 77% of the time, it accurately predicts a spine deformity. In medical 

applications, a low percentage of false positives is indicative of high precision and helps 

prevent misdiagnosis. 

Recall: The percentage of true positive predictions among all actual positive cases 

in the dataset is determined by recall, which can also be referred to as sensitivity. Here, 

the model achieves a recall of 70%, implying that it identifies 70% of all actual spine 

 

Table 2. Performance of Spine-CNN 

 

Metric Value 

Accuracy 74% 

Precision 77% 

Recall 70% 

F1-Score 73% 

ROC AUC 81% 
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deformities. A high recall indicates that the model effectively captures most instances of 

spinal deformities, reducing the chances of false negatives. 

F1-Score: The harmonic mean of precision and recall results in the F1-score, which 

provides a balance between the two measures. It is especially helpful in cases where there 

is an imbalance in classes. The F1-score in this instance is 73%, suggesting that recall and 

precision are fairly balanced. 

ROC AUC: The Receiver Operating Characteristic Area Under Curve (ROC AUC) 

evaluates the model's ability to differentiate between classes that are negative and positive 

at different thresholds. The model's 81% AUC indicates that it can distinguish between 

positive and negative occurrences with reasonable accuracy.  

Fig. 2 shows the obtained ROC curve, where the x-axis represents the False Positive 

Rate (FPR), while the y-axis represents the True Positive Rate (TPR). The curve plots 

TPR against FPR at various threshold settings, illustrating the trade-off between 

sensitivity (true positive rate) and specificity (false positive rate). 

 

 

Figure 2. ROC Curve 
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Overall, the results demonstrate promising performance of Spine-CNN for spinal 

deformity detection. The precision and recall values indicate a balanced performance in 

correctly identifying deformities while minimizing false positives and false negatives. 

Althorough analysis of the model's predictions is shown with a confusion matrix in Fig. 

3 

True Positives (TP): A total of 374 instances of spine deformities were accurately 

predicted by the model. (Positive class) 

False Positives (FP): 114 instances were incorrectly classified by the model as spine 

abnormalities when they weren't. (Negative class) 

True Negatives (TN): For 400 instances, the model accurately predicted that there 

were no spine deformities. (Negative class) 

False Negatives (FN): 159 instances were wrongly predicted by the model to not 

have spinal abnormalities when in fact they had. (Positive class). 

 

 

Figure 3. Confusion Matrix obtained by Spine-CNN 
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5 Conclusions and Future work 

To conclude, this research introduces a method for deep learning utilizing 

Convolutional Neural Networks (CNNs) to detect spinal abnormalities using Spine-CNN. 

This study designed and implemented a CNN model to detect and differentiate kinds of 

spine deformities substantially. This work succeeded in presenting that  through intensive 

experimentation and fine-tuning a CNN of substantial size which could achieve an 

accuracy of 74%. In terms of recall, precision, and F1 score, the Spine-CNN achieved 

impressive results, with 70%, 77%, and 73%, respectively. The study emphasizes the 

potential of deep learning technology, specifically Convolutional Neural Networks 

(CNNs), to change orthopedic medicine. With deep learning, the CNN model fuels a 

powerful engine for automatically detecting intricate details from radiographic imaging, 

which could make the diagnosis process smarter, thereby improving subsequent care and 

perhaps saving time and resources for all clinicians. 

Future research endeavors aimed at enhancing the diagnostic capabilities of Spine-

CNN could investigate the potential integration of 3D imaging data obtained from 

modalities such as MRI or CT scans, offering a more comprehensive understanding of 

spinal structures. Furthermore, the incorporation of multi-modal data, such as integrating 

X-ray images with a patient's medical history or other clinical information, holds 

significant potential for a thorough evaluation, thereby improving diagnostic outcomes.  

To ensure Spine-CNN's predictions are reliable in clinical settings, it can be 

integrated with explainable AI (XAI) techniques that allow clinicians to interpret the 

model's decisions. By providing insights into which features of the X-ray images the 

model focuses on, XAI will enable doctors to understand the rationale behind each 

prediction. This transparency will certainly gain clinician confidence, as it allows for 

cross-verification with medical knowledge and enhances the model's utility in real-world 

clinical settings to ensure its practical applicability. 
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