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Abstract

The duration spent by a stochastic process within a specific spatial range over

a given finite time period is referred to as the occupation times of the pro-

cess. In the nonwoven production industry, this phenomenon manifests itself

during the fiber lay-down process. The occupation time can be understood

as the mass of fiber material accumulated within a specific area. It is crucial

to have knowledge of the average mass per unit area of the final fleece from

an application standpoint. In this paper derive an expression for the expected

value of the occupation times in terms of Gaussian error functions.
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1 Introduction

Technical textiles have garnered significant interest across various industries in re-

cent decades because of their cost-effective production methods. Random fiber webs are

created by overlapping numerous individual slender fibers, resulting in nonwoven ma-

terials that are utilized in various industries such as textile, construction, and hygiene.

These materials serve as essential components in products like baby diapers, clothing tex-

tiles, filters, and medical devices, among others. Endless fibers are manufactured through



Due to its complexity it is not possible to study the whole process using mathematical

means at a stroke. In recent years, research has led to the development of a series of

models that effectively capture specific elements of the process chain. The papers [4, 6, 9]

presented and examined a probabilistic model concerning the fiber deposition process in

nonwoven manufacturing. The model relies on stochastic differential equations to depict

the final position of the fiber on the conveyor belt, taking into account the impact of

turbulent air currents. In [1] the estimation of the Ornstein-Uhlenbeck process’s parameter

from the available data on mass per unit area, the occupation time in mathematical terms,

was done.

Definition 1.1. Let [a, b] ⊂ R be a compact interval in R and let X = (Xt)t∈[0,T ], 0 <

T < ∞, be a stochastic process. The occupation time MT,[a,b](X) is defined as

MT,[a,b](X) :=

∫ T

0

1[a,b](Xt) dt =

∫ T

0

∫ b

a

δ0 (Xt − x) dx dt,

where δ0 and 1[a,b] is the Dirac-delta function and the indicator function of the interval

[a, b], respectively.

Occupation times formally represent the duration that a stochastic process occupies

the spatial interval [a, b] within the time interval [0, T ]. In terms of our physical framework

for the manufacturing of nonwoven materials, the occupation time can be understood as

the quantity of fiber material accumulated within the range [a, b], specifically the mass per

unit area of the resulting fleece.

In this research, we investigate the occupation time of one-dimensional Brownian

motion based on our previous work [18]. In that paper we show that occupation times of

melt-spinning processes, where numerous individual fibers are created by continuously

extruding molten polymer through closely spaced narrow nozzles arranged in a row on a

spinning beam. The viscous or viscoelastic fibers undergo stretching and spinning pro-

cesses until they solidify as a result of exposure to cooling air currents. Prior to being

placed on a moving conveyor belt to create a web, the elastic fibers tangle and form loops

because of the turbulent air flows. The homogeneity and load capacity of the fiber web are

crucial textile characteristics when evaluating the quality of industrial nonwoven fabrics.

The modeling and simulation of fiber dynamics and lay-down are essential for optimizing

and controlling fleece quality. The fleece’s mass per unit area is typically the available

data used to assess its quality, particularly when evaluating it on an industrial scale.



one-dimensional Brownian motion is a Hida distribution. The present paper derives the

explicit form of the expectation of the occupation times in terms of the Gaussian error

function. In subsequent investigations, we employ a white noise approach to extend the

concept to higher dimensions, despite the availability of classical probabilistic methods

for studying the problem. In Section 2, we present essential background information on

the theory of white noise. The main result, along with its proof, is presented in Section 3.

2 White Noise Analysis

This section provides essential background information on the theory of white noise.

For a more thorough examination of white noise theory we refer to [8, 11] and references

therein. We start with the Gelfand triple

S(R) ↪→ L2(R) ↪→ S ′(R),

where L2(R) is the real Hilbert space of all real-valued Lebesgue square-integrable func-

tions, S(R) is the space of real-valued Schwartz test function, and S ′(R) is the space of

real-valued tempered distributions. We construct a probability space (S ′(R), C, µ) where

C is the Borel σ-algebra on S ′(R) generated by cylinder sets. The Bochner-Minlos theo-

rem guarantees the unique determination of the probability measure µ by specifying the

characteristic function

C(f) :=

∫
S′(R)

exp (i⟨ω, f⟩) dµ(ω) = exp

(
−1

2
|f |20
)

for all f ∈ S(R). The standard norm in the space L2(R) is denoted by |·|0, while the

dual pairing between the spaces S ′(R) and S(R) is denoted by ⟨·, ·⟩. The dual pairing is

regarded as the extension of the inner product on L2(R), i.e.

⟨g, f⟩ =
∫
R
g(x)f(x) dx,

for all g ∈ L2(R) and f ∈ S(R). The real-valued white noise space is identified by

this probability space as it encompasses the paths of the one-dimensional Gaussian white

noise. In this framework a one-dimensional Brownian motion can be defined by a contin-

uous modification of the process B = (Bt)t≥0 with

B(t) :=
〈
·,1[0,t]

〉
,



where 1 denotes the indicator function.

In the sequel, we shall employ the the Gel’fand triple

(S) ↪→ L2(µ) := L2 (S ′(R), C, µ) ↪→ (S)∗

where (S) is the space of white noise test functions and (S)∗ is the topological dual space

of (S). The terms Hida test functions and Hida distributions refer to the components of

(S) and (S)∗, respectively. In this setting, white noise can be precisely characterized as

the temporal rate of change of Brownian motion with respect to the topology of (S)∗. The

S-transform, a crucial tool in the white noise analysis, is defined for any Φ ∈ (S)∗ as

(SΦ) (φ) := ⟨⟨Φ, : exp (⟨·, φ⟩) :⟩⟩ , φ ∈ S(R).

Here,

: exp (⟨·, φ⟩) ::= C(φ) exp (⟨·, φ⟩) ,

is the so-called Wick exponential and ⟨⟨·, ·⟩⟩ denotes the topological dual pairing between

(S)∗ and (S). The S-transform may be considered as the analog of the Laplace transform

in an infinite dimensional space with respect to the Gaussian measure. The S-transform

offers a convenient method for identifying a Hida distribution Φ ∈ (S)∗, especially in

cases where finding the explicit form of the Wiener-Itô chaos decomposition of Φ proves

to be challenging..

Theorem 2.1. [11] The S-transform is injective, i.e. if SΦ(φ) = SΨ(φ) for all φ ∈ S(R),
then Φ = Ψ.

In the subsequent discussion, we present a condition that is sufficient for the Bochner

integrability of a collection of Hida distributions that are contingent upon an additional

parameter.

Theorem 2.2. [10] Let (Ω,A, ν) be a measure space and λ 7→ Φλ be a function from Ω

to (S)∗. If

(1) the function λ 7→ S(Φλ)(φ) is measurable for all φ ∈ S(R), and

(2) there are C1(λ) ∈ L1 (Ω,A, ν), C2(λ) ∈ L∞ (Ω,A, ν) and a continuous seminorm

∥·∥ on S(R) such that for all z ∈ C, φ ∈ S(R)

|S(Φλ)(zφ)| ≤ C1(λ) exp
(
C2(λ)|z|2 ∥φ∥2

)
,



then Φλ is Bochner integrable in (S)∗. It follows that
∫
Ω
Φλ dν(λ) ∈ (S)∗. Moreover,

S

(∫
Ω

Φλ dν(λ)

)
=

∫
Ω

S(Φλ) dν(λ).

We define Donsker’s delta distribution by

δ0 (Bt − x) = δ0
(〈
·,1[0,t]

〉
− x
)
:=

1

2π

∫
R
exp

(
iλ
(〈
·,1[0,t]

〉
− x
))

dλ.

It has been demonstrated that δ0 (Bt − x) ∈ (S)∗. Moreover, the S-transform of the

aforementioned is expressed as

Sδ0 (Bt − x) (φ) =
1√
2πt

exp

(
− 1

2t

(〈
φ,1[0,t]

〉
− x
)2)

,

for any φ ∈ S(R). For further information and evidence, refer to the sources such as

[8, 11]. The Donsker delta distribution holds significant importance as a subject of study

in the realm of Gaussian analysis. For instance, it can be employed to examine local

times, self-intersection local times, stochastic current, and Feynman integrals, see e.g. [2,

3, 7, 13, 14, 17]. The derivatives of Donsker’s delta distribution has been also investigaed

in previous research such as [15]. In the context of stochastic processes with memory, the

analysis of Donsker’s delta distribution is presented in [16].

3 Main Result

In [18] the following results have been proved.

Theorem 3.1. 1. Let B = (Bt)t∈[0,T ] be a one-dimensional standard Brownian motion

and let [a, b] ⊂ R be a compact interval. The occupation time

MT,[a,b](B) :=

∫ T

0

∫ b

a

δ0 (Bt − x) dx dt

is a Hida distribution.

2. The expression for the S-transform of the occupation times of Brownian motion, for

any φ ∈ S(R), is provided by

SMT,[a,b](B)(φ) =

∫ T

0

1√
2πt

∫ b

a

exp

(
− 1

2t

(∫ t

0

φ(s) ds− x

)2
)

dx dt.

.



In this paper we improve the above result by deriving an explicit form for the expected

value of the occupation times of Brownian motion in terms of the Gaussian error function:

erf(x) :=
2√
π

∫ x

0

e−y2 dy, x > 0.

The following integration formula are required for this purpose.

Lemma 3.2 ([12], formula 14). For any n ≥ 2∫
erf(az)z−n dz = − erf(az)

(n− 1)zn−1
+

2a

(n− 1)
√
π

∫
1

zn−1
e−a2z2 dz.

Lemma 3.3 ([5], formula 3.461(5)). For any u > 0 and |argµ| < π
2∫ ∞

u

e−µx2

x2
dx =

1

u
eµx

2 −√
µπ (1− erf (u

√
µ)) .

Now, we are ready to prove our main result.

Theorem 3.4. The expectation of the occupation times MT,[a,b](B) of one-dimensional

standard Brownian motion B = (Bt)t∈[0,T ] is given by

Eµ

(
MT,[a,b](B)

)
=

√
T

2π

(
be−

b2

2T − ae−
a2

2T

)
− b2 − a2

2
+

T + b2

2
erf

(
b√
2T

)
− T + a2

2
erf

(
a√
2T

)
.

Proof: Since MT,[a,b](B) =
∫ T

0

∫ b

a
δ0 (Bt − x) dx dt ∈ (S)∗, then, using Theorem 2.2,

we have

Eµ

(
MT,[a,b](B)

)
= SMT,[a,b](B)(0)

= S

(∫ T

0

∫ b

a

δ0 (Bt − x) dx dt

)
(0)

=

∫ T

0

∫ b

a

Sδ0 (Bt − x) (0) dx dt

=

∫ T

0

∫ b

a

1√
2πt

e−
1
2t(⟨0,1[0,t]⟩−x)

2

dx dt

=

∫ T

0

∫ b

a

1√
2πt

e−
x2

2t dx dt

=

∫ T

0

1√
2πt

∫ b

a

e−
x2

2t dx dt

=

∫ T

0

1√
2πt

∫ b/
√
2t

a/
√
2t

√
2te−y2 dy dt



=
1√
π

∫ T

0

(∫ b/
√
2t

0

√
2te−y2 dy −

∫ a/
√
2t

0

√
2te−y2 dy

)
dt

=
1

2

∫ T

0

(
erf

(
b√
2t

)
− erf

(
a√
2t

))
dt.

Let us now compute
∫ T

0
erf
(

b√
2t

)
dt. Using substitution r = b√

2t
we get∫ T

0

erf

(
b√
2t

)
dt = b2

∫ ∞

b/
√
2T

erf(r)

r3
dr.

An application of Lemma 3.2 yields∫
erf(r)

r3
dr = −erf(r)

2r2
+

1√
π

∫
1

r2
e−r2 dr.

Hence, ∫ ∞

b/
√
2T

erf(r)

r3
dr = lim

s→∞

[
−erf(r)

2r2

]s
b/
√
2T

+
1√
π

∫
1

r2
e−r2 dr

=
T erf

(
b√
2T

)
b2

+
1√
π

∫ ∞

b/
√
2T

1

r2
e−r2 dr.

Since b√
2T

> 0 and |arg1| < π
2
, then, by using Lemma 3.3, we obtain∫ ∞

b/
√
2T

1

r2
e−r2 dr =

√
2T

b
e−

b2

2T −
√
π

(
1− erf

(
b√
2T

))
.

Therefore,∫ ∞

b/
√
2T

erf(r)

r3
dr =

T erf
(

b√
2T

)
b2

+
1

b

√
2T

π
e−

b2

2T −
(
1− erf

(
b√
2T

))
and∫ T

0

erf

(
b√
2t

)
dt = b2

∫ ∞

b/
√
2T

erf(r)

r3
dr

= b2

T erf
(

b√
2T

)
b2

+
1

b

√
2T

π
e−

b2

2T −
(
1− erf

(
b√
2T

))
= (T + b2)erf

(
b√
2T

)
+

√
2T

π
be−

b2

2T − b2.

Similarly, ∫ T

0

erf

(
a√
2t

)
dt = (T + a2)erf

(
a√
2T

)
+

√
2T

π
ae−

a2

2T − a2.



Finally, we have

Eµ

(
MT,[a,b](B)

)
=

1

2

∫ T

0

(
erf

(
b√
2t

)
− erf

(
a√
2t

))
dt

=
1

2

(
(T + b2)erf

(
b√
2T

)
+

√
2T

π
be−

b2

2T − b2 − (T + a2)erf

(
a√
2T

)

−
√

2T

π
ae−

a2

2T + a2

)

=

√
T

2π

(
be−

b2

2T − ae−
a2

2T

)
− b2 − a2

2
+

T + b2

2
erf

(
b√
2T

)
− T + a2

2
erf

(
a√
2T

)
.

The proof is finished.

4 Conclusions

In this paper we derive an explicit expression for the expected value of the occupation

times of a standard one-dimensional Brownian motion in terms of Gaussian error func-

tion. This explicit form is preferred from an application standpoint as it offers greater

utility for computational tasks. Our current findings are constrained to a one-dimensional

setting. As a further research plan, we will generalize the present result to higher spatial

dimensions.
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