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Abstract 

This paper discusses about synthesizing a state-feedback controller for a 

quad copter based on an optimal linear quadratic control method. The 

resulting light control system enables the quad copter to maintain stability 

and to track a reference input. The solution to this control problem involves 

solving an algebraic Riccati equation. The reference-input tracking 

capability is simulated to show the capability of the quadcopter flight 

control system. 
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1 Introduction 

Versatility of a quad copter has been celebrated by different communities, including, 

but not limited to, hobbyists, entrepreneurs, medical officers, defence forces, engineers 

and scientists. It has been used for various purposes (both civilian and military) that can 

benefit from the quadcopter as a flying vehicle. This is realizable because the quad 

copter is relatively easier to operate as compared to a full-scale conventional rotorcraft. 

Moreover, users also do not need a runway, an airport or a helipad to operate the 

quadcopter. In some applications, the quadcopter can even be controlled remotely in a 
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cost-effective manner to accomplish particular missions. It is also true that the quad 

copter has a relatively simple design with an uncomplicated structure. Thus, operational 

and maintenance costs pertaining to quadcopter operations tend to be low. All these 

features have indeed signify the merit of the quadcopter for a wider usage nowadays and 

in the future [1, 2]. 

These advantages will be more meaningful for the users if the quadcopter carrying 

payloads is equipped with appropriate flight control, instrumentation and 

communication systems. The flight control system has particularly served as an 

indispensable part that enables the quadcopter to perform various maneuvers in its 

operation [3]. Thus, we will only discuss about synthesizing a linear controller to enable 

the quadcopter to fly properly. There are different sorts of control methods that can be 

applied to develop the flight control system such as PID control,    or linear quadratic 

control,    control, sliding mode control and adaptive control (see e.g. [4, 5, 6]). 

To construct the linear controller for the quad copter, a linear time-invariant state 

space model is used to represent the quad copter dynamics at a chosen trim condition 

(equilibrium point). In this case, the linear model was derived through the Taylor series 

expansion as presented in [7]. Parameters of this model were identified and validated 

based on the comprehensive identification from frequency responses (CIFER) method 

[8]. This system identification method is well known as one that is able to yield a 

representative linear model for synthesizing a flight controller. Another system 

identification method that is also suitable for unmanned flying vehicles is referred to as 

the modeling for flight simulation and control analysis (MOSCA) method [9]. 

In this paper, the linear quadratic control method is applied to construct a state 

feedback controller for the quadcopter. This controller is obtained by minimizing a 

linear quadratic cost function that is subject to the quadcopter linear dynamics [10]. It is 

the nassumed that information about all state variables of the quad copter is available 

for feedback control. The aims of applying this controller are to stabilize the quadcopter 

at the equilibrium point and also to allow the quad copter to track a reference input [11]. 

An example based on the quad copter model for hovering flight [7] is presented to 

illustrate the performance of the resulting linear quadratic controller. 
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The rest of this paper is organized as follows. Section 2 presents the equations of 

motion of the quadcopter underlying the derivation of the linear state-space model used 

for synthesizing the linear quadratic controller.  Section 3 shows an example about 

applying the optimal linear quadratic control method to synthesize the stabilizing 

controller for the quadcopter. Finally, concluding remarks are presented in Section 4. 

 

2 Problem Formulation 

 

2.1  Equations of Motion 

A quadcopter is commonly considered as an aircraft which can move freely in six 

degrees of freedom within an air space. Thus, during its flight, the quadcopter is capable 

of simultaneously performing translational and rotational motions driven by external 

forces and torques/moments, respectively. To properly utilize the quadcopter for 

practical applications, it is then necessary to grasp such motions through a mathematical 

model derived based on physical laws. A suitable mathematical model about the rigid-

body dynamics of the quadcopter is usually presented in terms of equations of motions. 

These equations can be derived based on the Newton’s second law of motion and the 

kinematic principles of a moving reference frame [12, 13]. That is, 

     ̇         (1) 
     ̇         

Each physical quantity vector of the quadcopter dynamics equations (1) has three 

components in the   space (except  ) and is described as follows: 

      external forces and torques/moments acting on the quadcopter, 

      mass and moment of inertia, 

      translational velocities and angular rates 

where   [   ]    [   ]    [         ]    [   ]  

and   [   ]   Thus, the quadcopter equations of motion are expressed as 

follows: 

   [
 
 
 
]    [

 ̇       
 ̇       
 ̇       

], (2) 
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   [
 
 
 
]   [

    ̇  (       )  

    ̇             

    ̇  (       )  

]. 

The quadcopter is typically powered up by four motors mounted on the tips of its 

arms. A fixed-pitch propeller is installed on each motor to produce thrust that can be 

varied to propel and control the quadcopter’s motion. Thus, incorporating the 

gravitational and control forces, the equations of motion in (2) can be enhanced to have 

the form as follows: 

{
 
 
 
 
 

 
 
 
 
 

 ̇                  

 ̇                    

  ̇                  
  

 

 ̇  
(       )     

   
 

 ̇  
              

   

 ̇  
(       )     

   

 (3) 

 

2.2   A Linear State-Space Model 

The quadcopter’s dynamic equations in (3) can concisely be written in the form of a 

single nonlinear differential equation as follows: 

 ̇         (4) 

where   [         ]  is the state vector 

  [        ]  is the control input vector and f(·) is a vector-valued nonlinear 

function of   and  . Eachcomponent of   and   are described as follows [7]: 

        longitudinal, lateral and vertical velocities, 

        roll, pitch and yaw rates, 

        roll, pitch and yaw angles, 

     heave control input, 

     roll control input, 
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     pitch control input, 

     yaw control input. 

For the purpose of linear controller design, it is reasonable to linearize the nonlinear 

dynamic equation (4) about an equilibrium point (       ) via the Taylor series 

expansion. At the equilibrium point (       ) the quadcopter is said to be in a trim 

condition, where all forces and moments acting upon the quadcopter are balance. 

Consequently, the nonlinear dynamic equation (4) is equal to zero, that is (       )  

 .  

The state trajectory and control input of the quadcopter about the equilibrium point 

(       ) are given by 

                            (5) 

Thus, by taking only the first-order terms of the Taylor series expansion of the nonlinear 

dynamic equation (4), one may obtain a linear state-space model as follows: 

  ̇          , (6) 

where       ⁄  and       ⁄  are Jacobian matrices evaluated at the equilibrium 

point (       ). For simplicity, the symbol   in (6) will be removed subsequently. 

Referring to (3), one may obtain the   and   matrices in (6) as follows [7, 8]: 

 

  

[
 
 
 
 
 
 
 
 
    
    
    

    

    

   

    
   
   

    
    
   

    

    

    

     
     
     

         
      
      

   
   
   

     
     
     ]
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 ]

 
 
 
 
 
 
 
 

 (7) 

Here,   is the gravitational acceleration and other unknown non-zero entries of the   

and   matrices denote the stability derivatives of the forces and moments with respectto 

the corresponding state variables                       and control inputs           

        . 
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2.3  Optimal Linear Quadratic Control 

Stabilization problem. Given the linear time-invariant state-space model (6), (7) of the 

quadcopter, one may design a state-feedback controller by minimizing a linear-

quadratic cost function as follows [10]: 

  ∫[                     ]  

 

 

 (8) 

Where                            are weighting matrices. The 

desirable state-feedback controller is of the form 

           (9) 

where        is the state-feedback controller gain matrix. Applying the state 

feedback controller (9) to the open-loop state-space model (6) and (7) of the 

quadcopter, one obtains a closed-loop system given as follows: 

  ̇                 (10) 

Thus, the controller gain matrix K is such that the matrix        is Hurwitz in 

order to result in an asymptotically stable closed-loop system. This control 

problem is commonly known as a stabilization or regulation of an open-loop linear 

system around its equilibrium point and is solvable if       is stabilizable. The 

resulting closed-loop system is then enabled to return to the equilibrium point by 

eliminating the effect of any non-zero initial conditions. Such a controller is then 

called a linear quadratic regulator [12, 13]. 

To obtain such a stabilizing controller that minimizes the cost function (8), one 

is then required to find a symmetric matrix            as a solution to an 

algebraic Riccati equation: 

                    (11) 

Therefore, the controller gain matrix   can be constructed as 

          (12) 

and the minimal cost function value    is given as 

               (13) 
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When synthesizing a desirable controller to satisfy stability and performance criteria 

of a closed-loop system, one has to appropriately determine the weighting matrices 

  and  . To serve this purpose, it is quite common to choose   and   as diagonal 

matrices. Thus, they can be interpreted as penalties corresponding to each state and 

control input variables, respectively. Although the weighting matrices   and   are in 

general not unique, one may follow the Bryson’s rule to set their diagonal entries [10]. 

That is, 

    
 

                              
               

(14) 

    
 

                              
               

 

Tracking problem. In practice, one may not only be interested in stabilizing the open 

loop system, but also in tracking a reference input. To achieve this control objective, 

one needs to first define an output variable      required to follow the reference 

input     . That is, 

          , (15) 

where        is the output matrix. Thus, to design a state-feedback controller of the 

form (9) such that the output   will track the reference input    one may follow the same 

procedure to design the controller gain matrix   as above. In other words, the tracking 

control problem can be solved by transforming it into the stabilization problem. 

In this regard, an error variable variable      is defined such that 

                 
(16) 

 ̇           

Now, combining (6), (15) and (16), one may obtain an augmented open-loop system: 

 ̇̅       ̅ ̅     ̅             (17) 
       ̅ ̅     

where 

 ̅    [
    

    
]   ̅  [

  
  

]   ̅  [
 
 
],    [

 
 
],  ̅  [  ]  (18) 

Note that   and   are zero and identity matrices with appropriate dimensions, 

respectively. To track the reference input    it is thus necessary to stabilizer the 
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augmented open-loop system (18) by applying the state-feedback controller of the form 

(9). That is, 

      ̅ ̅     ̅  [    ] (19) 

where                    . The resulting closed-loop system can then be 

written as 

 ̇̅       ̅           (20) 
 
 
where 

   [
   

        
] (21) 

is Hurwitz. 
 

Since the closed-loop system (20) is asymptotically stable,  ̇    and  ̇    will 

converge to zero as time   goes to infinity. This implies that      will be equal to      at 

the steady state. In this way, the tracking control problem has been solved by 

incorporating an integral control action into the closed-loop system (20). In fact, this 

approach will also render the closed-loop system (20) robust against perturbations due 

to bounded exogenous disturbances. 

 

3 Controller Synthesis 

In this section, a state-feedback controller is designed for the quadcopter based on a 

linear dynamic model for hovering flight. Thus, the parameter values in the linear 

statespace model (6) and (7) are given as follows [7]: 

   
   
   
   
   
   

          
        , 
            
          
            
            

   

   

   

   
   

 

            

            

            

          

            

   
 

   
 

   
 

   
 

   
 

          

          

             

             

             

 (22)                                

and the gravitational accelaration                 . 

Let us consider the case where the quadcopter is required to track lateral (roll), 

longitudinal (pitch) and directional (yaw) reference inputs. The state-feedback controller 

can be obtained by applying the linear quadratic control method described in sub-
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Section 2.3. For this example, the weighting matrices        [  ]             [  ] 

are chosen to be diagonal matrices with the following entries: 

   
 

   
   

   

   
 

   
  

        

      

      

        

      

      

   
 

   
   

    
   

 

   
 

        

      

      

       

      

      

   
 

   
   
   

 

        

      
      
        

(23) 

Here, the subscripts                denote the state and control input variables of the 

augmented open-loop system (17).  

The controller gain matrix  ̅ can then be computed using the command lqr of 

MATLAB. Moreover, the efficacy of the resulting controller can be demonstrated using 

Simulink. Examples of tracking reference inputs for roll, pitch and yaw angles are 

considered, respectively. The time responses of these angular quantities are shown in 

Figures 1, 2, and 3. It is obvious that the resulting controller is indeed able to stabilize 

the closed-loop system and also to allow the respective state variables to track the given 

reference inputs with zero steady-state errors. 

 

 
Figure 1. The time response of the roll angle   due to the sinusoidal reference input    
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Figure 2. The time response of the pitch angle  due to the step reference input    

 
Figure 3. The time response of the yaw angle   due to the step reference input    

 

4 Conclusions 

This paper has presented the optimal linear quadratic control method to synthesize a 

state-feedback controller for the quadcopter. The resulting controller is effective not 

only to stabilize the quadcopter, but also to enable some state variables to track the 

given reference inputs. The tracking capability is facilitated by the integral control 

action incorporated into the closed-loop system. If the reference input is considered as a 
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perturbing exogenous input, it is then clear that the closed-loop system is robust against 

such a perturbation. The current results can be extended to consider other control 

methods to address an output-feedback control problem with uncertainty related to the 

quadcopter model. Furthermore, a more complex control problem can also be 

considered where there are multiple quadcopters flying in formation within a network. 
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