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Abstract 

An option is a financial instrument in which two parties agree to exchange 

assets at a price or strike and the date or maturity is predetermined. Options 

can provide investors with information to set strategies so they can increase 

profits and reduce risk. Option prices need to be accurately evaluated 

according to reality and quickly so that the resulting value can be utilized at 

the best momentum. Valuation of option prices can use the Heston equation 

model which has advantages compared to other equation models because the 

assumption of volatility is not constant with time or stochastic volatility. 

The volatility that is not constant with time corresponds to reality because 

the underlying asset as a basis can experience fluctuations. The Heston 

equation has a disadvantage because it is a derivative equation that is 

difficult to solve. One way to solve derivative equations easily is to use a 

numerical solution to the finite difference method of non-uniform grids 

because the Heston equation can be assumed to be a parabolic equation. The 

numerical solution of the finite difference method can solve derivative 

equations flexibly and do not require matrix processing. But it requires a 

heavy and slow computing process because there are many elements of 
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calculation and iteration. This study proposes a numerical solution to the 

finite difference method by using the Compute Unified Device Architecture 

(CUDA) parallel programming to solve the Heston equation model that 

applies the concept of stochastic volatility to get accurate and fast results. 

The results of this research proved 15.52 times faster in conducting parallel 

computing processes with  error of 0.0016.. 

Keywords: option price, heston model, finite difference, parallel, GPU 

CUDA. 

 

1 Introduction 

Options provide investors with information to set strategies so they can increase 

profits and reduce risk. Valuation of option prices can be assessed using the Heston 

equation model that applies stochastic volatility, which means that something is 

determined randomly and may not be accurately predicted. 

Research related to numerical solution of option price using Heston model been done 

previously which can be seen in Table 1. Researchers indicate that previous research 

was limited to solving Heston equations using numerical solutions for option prices and 

had not been implemented in parallel computing so that this study discussed the 

numerical solutions of finite methods difference non-uniform grids to solve Heston 

equations in parallel computing. 

The computational process of the finite difference method of non-uniform grids will 

increase as the number of grids increases. Heavy computing process is an obstacle in 

using many grids to improve the accuracy of results. At first, the computer had only one 

Central Processing Unit (CPU) or called the uniprocessor architecture for computational 

processing. Today computers evolve into multicore architectures that support processing 

in parallel. Parallel processing can be done with parallel programming, namely 

programming that focuses on solving problems simultaneously using fully using the 

computational power of computer architecture [1]. These problems can be solved by 

computational processing using parallel programming that utilizes the Graphics 

Processor Unit (GPU) with the Compute Unified Device Architecture (CUDA) 
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Programming Model. GPU consists of a set of CPU’s that perform computational 

processes in parallel so that it can work on many computational processes 

simultaneously. CUDA Programming Model is an application programming model that 

utilizes GPU as the core computational process. The solution to the numerical problem 

of derivative equations in the Heston model using the finite difference method that 

utilizes CUDA Programming Model-based parallel programming is expected to 

determine accurate option values with fast computational performance. 

Table 1. Previous research 

Research Purpose 

Diamond–Cell Finite Volume 

Scheme for the Heston Model [7] 

Propose a new numerical scheme to solve 

partial equations that appear in the Heston 

stochastic volatility model. 

  

Stability of central finite difference 

schemes for the Heston PDE [8] 

Measuring stability limits is useful for time 

discretization methods in numerical solutions 

of Heston partial differential equations that 

stand out from mathematical finance. 

Pricing European Options with 

Proportional Transaction Costs and 

Stochastic Volatility Using a 

Penalty Approach and a Finite 

Volume Scheme [9] 

Establishing European standard option pricing 

values based on proportional and stochastic 

volatility transaction cost using the penalty 

approach method and finite volume scheme. 

Numerical methods to solve PDE 

models for pricing business 

companies in different regimes and 

implementation in GPUs [10] 

Solving the problem of corporate valuation 

models using a numerical approach to the 

finite difference method developed with 

parallelization using GPU technology. 

Pricing of early-exercise Asian 

options under Lévy processes 

based on Fourier cosine 

expansions [11] 

Set prices for Asian options with initial 

training features based on two-dimensional 

integration and backward recursion from 

Fourier coefficients in several numerical 

techniques implemented on the GPU. 

 

 

2 Theory 

2.1. Option Price 

An option is a financial instrument in which two parties agree to exchange assets at a 

price or strike and the date or maturity is predetermined [2]. By paying in advance, 
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known as price or premium from options, contract holders have the right, but not the 

obligation, to buy or sell assets at the time of maturity [3]. For example, the European 

option model has rules that can only be exercised at maturity. 

The value of the option is based on the derivative value of the underlying asset, so 

the option is derivative. Based on this, the option contract is one of "derivative security" 

[4]. The underlying asset value has a property proportional to the value of the call 

option and the property is inversely proportional to the value of puts option. The value 

of up option calls if the value of the underlying asset rises and vice versa. The value 

puts down if the underlying asset rises and vice versa. 

 

2.2.  Finite Difference for Heston PDE 

The finite difference method has the idea of discretizing domains with several grid 

points and using the finite difference to estimate derivatives at these grids [5]. The 

Finite Difference method assumes that the model grids can be structured or 

unstructured. The finite difference method is a technique to get numerical estimates 

from PDE. 

To be able to implement finite difference to solve Heston PDE, it is necessary to 

discretize grids for the stock price and variance variables and discretize grids for 

maturity. This research uses non-uniform grids to discretize grids. Non-uniform grids 

have irregular grid distances between the two variables used. Non-uniform grids can be 

refined at certain points so that accurate price valuations can be produced with accurate 

prices using a few grid points. 

The variables used to form grids are  ,  , and  . It is necessary to determine the 

maximum value and the minimum value of S, v, and t as the value limit. The maximum 

value is denoted as      ,     , and     . The values of       and      are obtained 

based on the calculated option case, while         based on the maturity time. The 

minimum value is denoted as      ,     , and     . The minimum value will always be 

set to                    as the lower limit [6]. 
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The grid size is set with      point for the stock price,      point for volatility, and 

     point for maturity. The width of non-uniform grids for      stock price is 

arranged by equation 

          (  )            (1) 

The width of non-uniform grids for      volatility is arranged by equation 

         (   )             (2) 

The width of non-uniform grids for      volatility is arranged by equation 

                     (3) 

This Heston PDE model estimates the point values in the interior and boundary sections 

separately. The interior part (     ) is estimated by using first-order derivatives with a 

central difference. The boundary section is governed by certain conditions. 

The boundary section has several conditions that need to be initialized, i.e. the 

conditions at maturity,              ,       , and       . 

The boundary conditions at maturity,    , the value of the call option is the intrinsic 

value (payoff) so that the equation is obtained. 

 (        )     (      ) (4) 

with a limit             and            . 

The boundary condition when         , the call option becomes useless. Because 

that equation is obtained 

 (        )    (5) 

with a limit of             and            . 

The boundary condition when       , the equation used is 

 (           )       (6) 

with a limit of             and            . 

The boundary condition when       , the equation used is 

 (          )    (7) 

with a limit of             and            . 



International Journal of Applied Sciences and Smart Technologies 

Volume 2, Issue 1, pages 9–22 

p-ISSN 2655-8564, e-ISSN 2685-9432 

  
14 

 

  

The boundary conditions when         , the equation used is  , namely 
  

  
 which 

is solved using the central difference and 
  

  
 which are resolved using forward 

difference. The equation formed is 

  

  
(        )  

      
        

  

          
 

  

  
(       )  

    
      

  

  
 (8) 

Explicit schemes will be used as a technique to solve the finite difference. The equation 

used to obtain the elements     
    is 

    
        

    [
 

 
    

   

    
 

 
    

  

           

  

    
  (   )  

 

  
   (    )

 

  
  ]    

  (9) 

 

2.3.  Compute Unified Device Architecture (CUDA) Programming Structure 

The CUDA programming model can execute applications on heterogeneous 

computing systems by only annotating code with a set of extensions to the C 

programming language. NVIDIA can be used to allocate the right host memory (CPU) 

and device (GPU) so that applications can be optimized and maximize the use of 

hardware [1]. The structure of the CUDA application process can be seen in Figure 1. 

 

 

Figure 1. CUDA programming structure 

 

CUDA which consists of serial code is run on the host, while parallel code is run on 

the GPU device. Host code is written in ANSI C and Device code is written using 

CUDA C. All code can be placed in a single source file or can use multiple source files 
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to build the desired application or library. Codes that have been created for hosts and 

devices can be run using NVIDIA C Compiler (NVCC). 

 

 

3 Algorithm 

Parallel programming is a programming algorithm that forms a program that is 

capable of working on several processes in parallel utilizing multiple processors. In 

programming, CUDA uses SIMT (Single Instruction, Multiple Threads) execution 

models that are similar to SIMD (Single Instruction, Multiple Data) execution models 

for general data parallel programming [10]. The CUDA code execution unit, the kernel, 

executes simultaneously a set of threads in each block freely. Each thread will run one 

processor simultaneously on the same but different data instructions. Figure 2 describes 

the CPU and GPU algorithms. 

Based on the flowchart above, it can be seen that the GPU algorithm can simplify the 

CPU algorithm so that it is not complex, where simple processes such as temporary grid 

updates, u, can be done simultaneously with boundary initialization. Therefore the GPU 

algorithm is simpler and not much repetitive. Repetition is only done to do time 

iterations. The 2-D matrix used is changed to    , because GPUs have different 

matrix index concepts. The CPU index is a row of    columns,                        

and an index on the GPU in the form of columns   rows,                        GPU 

uses column   row index because it adjusts the hierarchy of blocks and threads. 

Changing the index to     makes the matrix index can be adjusted according to the 

indexing formula ((      )    ) in order to meet the concept of matrix CPU and GPU. 

In addition, memory allocation is only done in the matrix pointer         to allocate 

memory pointers on the device, GPU and copy values from the host, CPU to device, 

GPU. Another parameter that is not a pointer can be used directly across hosts and 

devices. 
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Figure 2. Flowchart of CPU (left) and GPU (right) algorithms 
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Finite difference non-uniform grids numerical solutions require complex and many 

computational processes, so that an increase in the number of relevant grids can be used 

to measure computational performance. This study conducted a numerical experiment 

by increasing the number of phased grids to see the difference between the performance 

of the GPU algorithm and the CPU algorithm. Experiments have been carried out on 

stand-alone computers with Intel Core i7       which has   cores with         clock, 

       RAM, and Nvidia Geforce GTX         GPU which has      processors and 

         GDDR5X. The CUDA version installed is    . 

 

 

4 Results and Discussions 

The implementation of the GPU algorithm to solve the equations of the Heston 

model using the finite difference method non-uniform grids needs to be verified. 

Verification is done by conducting numerical experiments to see the convergence of 

numerical finite difference non-uniform grids with exact values, along with the increase 

in the number of grid points for stock prices and volatility. The parameter used for this 

numerical experiment is          ;          ;                         

     ;        ;        and  



The combination of the number of grid points for the stock price and the volatility 

used varies. The size of the grids is formed by following the condition that finer grids 

approach the strike price   and around the point     . The number of grids for the 

stock price,   , has a range of values from    to    , with    increases. The number of 

grids for the stock price,   , has a range of values from    to   , with 5 increases. This 

numerical experiment will be an iterated as much as         as the number of time 

points. The maximum grid combination in this experiment is        and      . 

Non-uniforms grids can be seen in Figure 3. 
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Figure 3. Non-uniform grids 

 
Figure 4. Surface prices use finite difference non-uniform grids        and       

 

The exact value of the stock price,       and volatility,        with the exact 

value of the option price using the closed form solution of the Heston model is       . 

The results of finite difference non-uniform grids with a combination of up to grids 

       and       can be seen in Table 2 resulting in a value of 4.2801 using the 

GPU algorithm and 4.2805 using the CPU algorithm. Experiments were also carried out 

by increasing grid    and    to reach the limit before instability was achieved. The 

results obtained show grids        and        are the limits before instability is 

achieved. 
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Table 2. Relative error numerical finite difference non-uniform grids CPU and GPU solutions 

      
CPU GPU 

Price Error Price Error 

80 20 4.2767 -0.0016 4.2760 -0.0023 

90 25 4.2868 0.0085 4.2864 0.0081 

100 30 4.2811 0.0028 4.2807 0.0024 

110 35 4.2797 0.0014 4.2792 0.0009 

120 40 4.2814 0.0031 4.2810 0.0027 

130 45 4.2808 0.0025 4.2804 0.0021 

140 50 4.2812 0.0029 4.2808 0.0025 

150 55 4.2819 0.0036 4.2814 0.0031 

160 60 4.2796 0.0013 4.2792 0.0009 

170 65 4.2800 0.0017 4.2796 0.0013 

180 70 4.2813 0.0030 4.2809 0.0026 

190 75 4.2805 0.0022 4.2801 0.0018 

190 150 4.2705 -0.0078 4.2799 0.0016 

 

 

The error is obtained by calculating the difference in the option price of the 

numerical result with the exact value. The error in the experimental results has a variety 

of values, where at each increase in the number of grids, the error does not always 

decrease. If we look further, the overall error continues to decrease as grid size 

increases. In the maximum grid combination        and       , the smallest is 

obtained obtained at       . So that it can be ascertained that increasing the number of 

grid points will increase accuracy. Table 3 shows the GPU algorithm can produce 

values that are closer to the exact values and are more accurate when grids are enlarged. 

Enlargement grids also run faster when processed using the GPU, compared to when 

processed using CPU results per exact price, CPU numeric, and numerical GPU. The 

price-end-result using non-uniform finite difference grids        and       after 

an iteration of          is shown in Figure 4. 

 

Comparison of GPU algorithm performance with CPU algorithm was done by 

conducting numerical experiments by increasing the number of phased grids can be seen 

in Table 3. 

 



International Journal of Applied Sciences and Smart Technologies 

Volume 2, Issue 1, pages 9–22 

p-ISSN 2655-8564, e-ISSN 2685-9432 

  
20 

 

  

 

Tabel 3. Performance: CPU vs GPU with 3000 time steps (  ) and various grids 

      
Grid 

points 

CPU Time 

(s) 

GPU Time 

(s) 

Speedup 

(times) 

Speedup 

(s) 

80 20 1600 0.243 0.176 1.38X 0.067 

90 25 2250 0.348 0.171 2.04X 0.177 

100 30 3000 0.467 0.172 2.72X 0.295 

110 35 3850 0.607 0.171 3.55X 0.436 

120 40 4800 0.766 0.179 4.28X 0.587 

130 45 5850 0.921 0.179 5.15X 0.742 

140 50 7000 1.111 0.181 6.14X 0.93 

150 55 8250 1.321 0.176 7.51X 1.145 

160 60 9600 1.547 0.181 8.55X 1.366 

170 65 11050 1.793 0.186 9.64X 1.607 

180 70 12600 2.033 0.182 11.17X 1.851 

190 75 14250 2.323 0.193 12.04X 2.13 

190 150 28500 4.765 0.307 15.52X 4.458 

 

Based on the experimental results, stable GPU performance is always superior to the 

CPU. In finer grids as they approach the K strike price and around the point     , the 

grid sizes of     and    are increases        and      gradually, GPU performance 

continues to increase        faster. Experiments were also carried out by increasing    

grids to reach the limit before instability was achieved. The results are obtained on the  

grids        and        where computing performance reaches        faster. 

The bigger the grid, the CPU performance will decrease while the GPU performance is 

stable. 

 

5 Conclusions 

This study aims to solve the equations of the Heston model using numerical solutions 

with finite difference non-uniform grids based on the Compute Unified Device 

Architecture (CUDA) parallel programming  to get accurate and fast results. Based on 

this research, finite difference non-uniform grids with GPU algorithms can produce 

values that approach exact values and are more accurate when grids are enlarged. 

The error in the experimental results continues to decrease every time    is increased 

by 10 points, and    is increased by 5 points. The results of the finite difference non-
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uniform grids numerical solution with a maximum combination of grids        and 

      produce a value of        with an error of       , compared to the 

combination value of internal grids       and       that produces a value of 

4.2760  with  an error of         . In the stability experiment with a combination of 

grids        and       , the error obtained descreases to       . This proves 

that increasing the number of grid points will increase accuracy. 

Enlargement grids also run faster when processed with the GPU. The computational 

process is faster      times in the combination of initial grids       and       

and continues to increase until it has an acceleration of        faster on the grid 

       and      . In the stability experiment with a combination of grids 

       and       , computing performance reaches        faster. 
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