
International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

9

Pricing the Financial Heston Model Using

Parallel Finite Difference Method on GPU CUDA

Pranowo

Department of Informatics Engineering, Faculty of Industrial Technology,

Universitas Atma Jaya Yogyakarta, Indonesia

Corresponding Author: pranowo@uajy.ac.id

(Received 29-04-2019; Revised 17-10-2019; Accepted 17-10-2019)

Abstract

An option is a financial instrument in which two parties agree to exchange

assets at a price or strike and the date or maturity is predetermined. Options

can provide investors with information to set strategies so they can increase

profits and reduce risk. Option prices need to be accurately evaluated

according to reality and quickly so that the resulting value can be utilized at

the best momentum. Valuation of option prices can use the Heston equation

model which has advantages compared to other equation models because the

assumption of volatility is not constant with time or stochastic volatility.

The volatility that is not constant with time corresponds to reality because

the underlying asset as a basis can experience fluctuations. The Heston

equation has a disadvantage because it is a derivative equation that is

difficult to solve. One way to solve derivative equations easily is to use a

numerical solution to the finite difference method of non-uniform grids

because the Heston equation can be assumed to be a parabolic equation. The

numerical solution of the finite difference method can solve derivative

equations flexibly and do not require matrix processing. But it requires a

heavy and slow computing process because there are many elements of

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

10

calculation and iteration. This study proposes a numerical solution to the

finite difference method by using the Compute Unified Device Architecture

(CUDA) parallel programming to solve the Heston equation model that

applies the concept of stochastic volatility to get accurate and fast results.

The results of this research proved 15.52 times faster in conducting parallel

computing processes with error of 0.0016..

Keywords: option price, heston model, finite difference, parallel, GPU

CUDA.

1 Introduction

Options provide investors with information to set strategies so they can increase

profits and reduce risk. Valuation of option prices can be assessed using the Heston

equation model that applies stochastic volatility, which means that something is

determined randomly and may not be accurately predicted.

Research related to numerical solution of option price using Heston model been done

previously which can be seen in Table 1. Researchers indicate that previous research

was limited to solving Heston equations using numerical solutions for option prices and

had not been implemented in parallel computing so that this study discussed the

numerical solutions of finite methods difference non-uniform grids to solve Heston

equations in parallel computing.

The computational process of the finite difference method of non-uniform grids will

increase as the number of grids increases. Heavy computing process is an obstacle in

using many grids to improve the accuracy of results. At first, the computer had only one

Central Processing Unit (CPU) or called the uniprocessor architecture for computational

processing. Today computers evolve into multicore architectures that support processing

in parallel. Parallel processing can be done with parallel programming, namely

programming that focuses on solving problems simultaneously using fully using the

computational power of computer architecture [1]. These problems can be solved by

computational processing using parallel programming that utilizes the Graphics

Processor Unit (GPU) with the Compute Unified Device Architecture (CUDA)

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

11

Programming Model. GPU consists of a set of CPU’s that perform computational

processes in parallel so that it can work on many computational processes

simultaneously. CUDA Programming Model is an application programming model that

utilizes GPU as the core computational process. The solution to the numerical problem

of derivative equations in the Heston model using the finite difference method that

utilizes CUDA Programming Model-based parallel programming is expected to

determine accurate option values with fast computational performance.

Table 1. Previous research

Research Purpose

Diamond–Cell Finite Volume

Scheme for the Heston Model [7]

Propose a new numerical scheme to solve

partial equations that appear in the Heston

stochastic volatility model.

Stability of central finite difference

schemes for the Heston PDE [8]

Measuring stability limits is useful for time

discretization methods in numerical solutions

of Heston partial differential equations that

stand out from mathematical finance.

Pricing European Options with

Proportional Transaction Costs and

Stochastic Volatility Using a

Penalty Approach and a Finite

Volume Scheme [9]

Establishing European standard option pricing

values based on proportional and stochastic

volatility transaction cost using the penalty

approach method and finite volume scheme.

Numerical methods to solve PDE

models for pricing business

companies in different regimes and

implementation in GPUs [10]

Solving the problem of corporate valuation

models using a numerical approach to the

finite difference method developed with

parallelization using GPU technology.

Pricing of early-exercise Asian

options under Lévy processes

based on Fourier cosine

expansions [11]

Set prices for Asian options with initial

training features based on two-dimensional

integration and backward recursion from

Fourier coefficients in several numerical

techniques implemented on the GPU.

2 Theory

2.1. Option Price

An option is a financial instrument in which two parties agree to exchange assets at a

price or strike and the date or maturity is predetermined [2]. By paying in advance,

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

12

known as price or premium from options, contract holders have the right, but not the

obligation, to buy or sell assets at the time of maturity [3]. For example, the European

option model has rules that can only be exercised at maturity.

The value of the option is based on the derivative value of the underlying asset, so

the option is derivative. Based on this, the option contract is one of "derivative security"

[4]. The underlying asset value has a property proportional to the value of the call

option and the property is inversely proportional to the value of puts option. The value

of up option calls if the value of the underlying asset rises and vice versa. The value

puts down if the underlying asset rises and vice versa.

2.2. Finite Difference for Heston PDE

The finite difference method has the idea of discretizing domains with several grid

points and using the finite difference to estimate derivatives at these grids [5]. The

Finite Difference method assumes that the model grids can be structured or

unstructured. The finite difference method is a technique to get numerical estimates

from PDE.

To be able to implement finite difference to solve Heston PDE, it is necessary to

discretize grids for the stock price and variance variables and discretize grids for

maturity. This research uses non-uniform grids to discretize grids. Non-uniform grids

have irregular grid distances between the two variables used. Non-uniform grids can be

refined at certain points so that accurate price valuations can be produced with accurate

prices using a few grid points.

The variables used to form grids are , , and . It is necessary to determine the

maximum value and the minimum value of S, v, and t as the value limit. The maximum

value is denoted as , , and . The values of and are obtained

based on the calculated option case, while based on the maturity time. The

minimum value is denoted as , , and . The minimum value will always be

set to as the lower limit [6].

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

13

The grid size is set with point for the stock price, point for volatility, and

 point for maturity. The width of non-uniform grids for stock price is

arranged by equation

 () (1)

The width of non-uniform grids for volatility is arranged by equation

 () (2)

The width of non-uniform grids for volatility is arranged by equation

 (3)

This Heston PDE model estimates the point values in the interior and boundary sections

separately. The interior part () is estimated by using first-order derivatives with a

central difference. The boundary section is governed by certain conditions.

The boundary section has several conditions that need to be initialized, i.e. the

conditions at maturity, , , and .

The boundary conditions at maturity, , the value of the call option is the intrinsic

value (payoff) so that the equation is obtained.

 () () (4)

with a limit and .

The boundary condition when , the call option becomes useless. Because

that equation is obtained

 () (5)

with a limit of and .

The boundary condition when , the equation used is

 () (6)

with a limit of and .

The boundary condition when , the equation used is

 () (7)

with a limit of and .

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

14

The boundary conditions when , the equation used is , namely

 which

is solved using the central difference and

 which are resolved using forward

difference. The equation formed is

()

()

 (8)

Explicit schemes will be used as a technique to solve the finite difference. The equation

used to obtain the elements
 is

 [

 ()

 ()

]

 (9)

2.3. Compute Unified Device Architecture (CUDA) Programming Structure

The CUDA programming model can execute applications on heterogeneous

computing systems by only annotating code with a set of extensions to the C

programming language. NVIDIA can be used to allocate the right host memory (CPU)

and device (GPU) so that applications can be optimized and maximize the use of

hardware [1]. The structure of the CUDA application process can be seen in Figure 1.

Figure 1. CUDA programming structure

CUDA which consists of serial code is run on the host, while parallel code is run on

the GPU device. Host code is written in ANSI C and Device code is written using

CUDA C. All code can be placed in a single source file or can use multiple source files

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

15

to build the desired application or library. Codes that have been created for hosts and

devices can be run using NVIDIA C Compiler (NVCC).

3 Algorithm

Parallel programming is a programming algorithm that forms a program that is

capable of working on several processes in parallel utilizing multiple processors. In

programming, CUDA uses SIMT (Single Instruction, Multiple Threads) execution

models that are similar to SIMD (Single Instruction, Multiple Data) execution models

for general data parallel programming [10]. The CUDA code execution unit, the kernel,

executes simultaneously a set of threads in each block freely. Each thread will run one

processor simultaneously on the same but different data instructions. Figure 2 describes

the CPU and GPU algorithms.

Based on the flowchart above, it can be seen that the GPU algorithm can simplify the

CPU algorithm so that it is not complex, where simple processes such as temporary grid

updates, u, can be done simultaneously with boundary initialization. Therefore the GPU

algorithm is simpler and not much repetitive. Repetition is only done to do time

iterations. The 2-D matrix used is changed to , because GPUs have different

matrix index concepts. The CPU index is a row of columns,

and an index on the GPU in the form of columns rows, GPU

uses column row index because it adjusts the hierarchy of blocks and threads.

Changing the index to makes the matrix index can be adjusted according to the

indexing formula (()) in order to meet the concept of matrix CPU and GPU.

In addition, memory allocation is only done in the matrix pointer to allocate

memory pointers on the device, GPU and copy values from the host, CPU to device,

GPU. Another parameter that is not a pointer can be used directly across hosts and

devices.

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

16

Figure 2. Flowchart of CPU (left) and GPU (right) algorithms

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

17

Finite difference non-uniform grids numerical solutions require complex and many

computational processes, so that an increase in the number of relevant grids can be used

to measure computational performance. This study conducted a numerical experiment

by increasing the number of phased grids to see the difference between the performance

of the GPU algorithm and the CPU algorithm. Experiments have been carried out on

stand-alone computers with Intel Core i7 which has cores with clock,

 RAM, and Nvidia Geforce GTX GPU which has processors and

 GDDR5X. The CUDA version installed is .

4 Results and Discussions

The implementation of the GPU algorithm to solve the equations of the Heston

model using the finite difference method non-uniform grids needs to be verified.

Verification is done by conducting numerical experiments to see the convergence of

numerical finite difference non-uniform grids with exact values, along with the increase

in the number of grid points for stock prices and volatility. The parameter used for this

numerical experiment is ; ;

 ; ;  and  



The combination of the number of grid points for the stock price and the volatility

used varies. The size of the grids is formed by following the condition that finer grids

approach the strike price and around the point . The number of grids for the

stock price, , has a range of values from to , with increases. The number of

grids for the stock price, , has a range of values from to , with 5 increases. This

numerical experiment will be an iterated as much as as the number of time

points. The maximum grid combination in this experiment is and .

Non-uniforms grids can be seen in Figure 3.

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

18

Figure 3. Non-uniform grids

Figure 4. Surface prices use finite difference non-uniform grids and

The exact value of the stock price, and volatility, with the exact

value of the option price using the closed form solution of the Heston model is .

The results of finite difference non-uniform grids with a combination of up to grids

 and can be seen in Table 2 resulting in a value of 4.2801 using the

GPU algorithm and 4.2805 using the CPU algorithm. Experiments were also carried out

by increasing grid and to reach the limit before instability was achieved. The

results obtained show grids and are the limits before instability is

achieved.

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

19

Table 2. Relative error numerical finite difference non-uniform grids CPU and GPU solutions

CPU GPU

Price Error Price Error

80 20 4.2767 -0.0016 4.2760 -0.0023

90 25 4.2868 0.0085 4.2864 0.0081

100 30 4.2811 0.0028 4.2807 0.0024

110 35 4.2797 0.0014 4.2792 0.0009

120 40 4.2814 0.0031 4.2810 0.0027

130 45 4.2808 0.0025 4.2804 0.0021

140 50 4.2812 0.0029 4.2808 0.0025

150 55 4.2819 0.0036 4.2814 0.0031

160 60 4.2796 0.0013 4.2792 0.0009

170 65 4.2800 0.0017 4.2796 0.0013

180 70 4.2813 0.0030 4.2809 0.0026

190 75 4.2805 0.0022 4.2801 0.0018

190 150 4.2705 -0.0078 4.2799 0.0016

The error is obtained by calculating the difference in the option price of the

numerical result with the exact value. The error in the experimental results has a variety

of values, where at each increase in the number of grids, the error does not always

decrease. If we look further, the overall error continues to decrease as grid size

increases. In the maximum grid combination and , the smallest is

obtained obtained at . So that it can be ascertained that increasing the number of

grid points will increase accuracy. Table 3 shows the GPU algorithm can produce

values that are closer to the exact values and are more accurate when grids are enlarged.

Enlargement grids also run faster when processed using the GPU, compared to when

processed using CPU results per exact price, CPU numeric, and numerical GPU. The

price-end-result using non-uniform finite difference grids and after

an iteration of is shown in Figure 4.

Comparison of GPU algorithm performance with CPU algorithm was done by

conducting numerical experiments by increasing the number of phased grids can be seen

in Table 3.

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

20

Tabel 3. Performance: CPU vs GPU with 3000 time steps () and various grids

Grid

points

CPU Time

(s)

GPU Time

(s)

Speedup

(times)

Speedup

(s)

80 20 1600 0.243 0.176 1.38X 0.067

90 25 2250 0.348 0.171 2.04X 0.177

100 30 3000 0.467 0.172 2.72X 0.295

110 35 3850 0.607 0.171 3.55X 0.436

120 40 4800 0.766 0.179 4.28X 0.587

130 45 5850 0.921 0.179 5.15X 0.742

140 50 7000 1.111 0.181 6.14X 0.93

150 55 8250 1.321 0.176 7.51X 1.145

160 60 9600 1.547 0.181 8.55X 1.366

170 65 11050 1.793 0.186 9.64X 1.607

180 70 12600 2.033 0.182 11.17X 1.851

190 75 14250 2.323 0.193 12.04X 2.13

190 150 28500 4.765 0.307 15.52X 4.458

Based on the experimental results, stable GPU performance is always superior to the

CPU. In finer grids as they approach the K strike price and around the point , the

grid sizes of and are increases and gradually, GPU performance

continues to increase faster. Experiments were also carried out by increasing

grids to reach the limit before instability was achieved. The results are obtained on the

grids and where computing performance reaches faster.

The bigger the grid, the CPU performance will decrease while the GPU performance is

stable.

5 Conclusions

This study aims to solve the equations of the Heston model using numerical solutions

with finite difference non-uniform grids based on the Compute Unified Device

Architecture (CUDA) parallel programming to get accurate and fast results. Based on

this research, finite difference non-uniform grids with GPU algorithms can produce

values that approach exact values and are more accurate when grids are enlarged.

The error in the experimental results continues to decrease every time is increased

by 10 points, and is increased by 5 points. The results of the finite difference non-

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

21

uniform grids numerical solution with a maximum combination of grids and

 produce a value of with an error of , compared to the

combination value of internal grids and that produces a value of

4.2760 with an error of . In the stability experiment with a combination of

grids and , the error obtained descreases to . This proves

that increasing the number of grid points will increase accuracy.

Enlargement grids also run faster when processed with the GPU. The computational

process is faster times in the combination of initial grids and

and continues to increase until it has an acceleration of faster on the grid

 and . In the stability experiment with a combination of grids

 and , computing performance reaches faster.

Acknowledgements

This research was supported in part by Universitas Atma Jaya Yogyakarta (UAJY).

This research was conducted using the GPU computers in the Graduate Program of

Informatics Engineering UAJY.

References

[1] P. Kutik and K. Mikula, “Diamond–cell finite volume scheme for the heston

model,” Discrete & Continuous Dynamical Systems, 8 (5), 913 931, 2015.

[2] K. J. in’t Hout and K. Volders, “Stability of central finite difference schemes for the

heston PDE,” Numerical Algorithms, 60 (1), 115–133, 2012.

[3] W. Li and S. Wang , “Pricing european options with proportional transaction

costs”, Computers and Mathematics with Applications,73 (11), 2454 2469, 2017.

[4] D. Castillo, A. M. Ferreiro, J. A. García-Rodríguez, and C. Vázquez,” Numerical

methods to solve PDE models for pricing business companies in different regimes

and implementation in GPUs,” Applied Mathematics and Computation, 219 (24),

11233 11257, 2013.

International Journal of Applied Sciences and Smart Technologies

Volume 2, Issue 1, pages 9–22

p-ISSN 2655-8564, e-ISSN 2685-9432

22

 [5] B. Zhang and C. W. Oosterlee, “Pricing of early-exercise Asian options under

Lévy processes based on Fourier cosine expansions,” Applied Numerical

Mathematics, 78, 14 30, 2014.

[6] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Programming,

John Wiley & Sons, Indianapolis, 2014.

[7] E. Tandelilin, Portofolio dan Investasi: Teori dan Aplikasi, Kanisius, Yogyakarta,

2010.

[8] G. I. Ramírez-Espinoza, “Conservative and finite volume methods for the pricing

problem,” Master Thesis, Faculty of Mathematics and Natural Science, Bergische

Universität Wuppertal, Wuppertal, 2011.

[9] T. F. Crack, Basic Black-Scholes: Option Pricing and Trading, 2009.

[10] Y. Chen, “Numerical Methods for Pricing Multi-Asset Options,” Master Thesis,

Graduate Department of Computer Science, University of Toronto, Toronto, 2017.

[11] F. D. Rouah, The Heston Model and Its Extensions in Matlab and C#, John Wiley

& Sons, Hoboken, 2013.

