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Abstract 

Satellite imagery is utilized in various fields, one of which is land use and land cover (LULC) 

analysis. This study aims to classify water bodies using machine learning models such as 

SVM, K-NN, RF, CART, and GNB. The data source is obtained from the Google Earth 

Engine (GEE) platform using Sentinel-2 Level-2A satellite imagery, with a dataset of 5,514 

data points per year. The Pixel-Based approach is used as the main method for data 

extraction, while CRISP-DM is applied as a structured methodology for data management. 

The parameter indices used include the BSI, NDBI, MNDWI, NDVI and AWEIsh. The 

results of these calculations serve as dataset features for training algorithms in the model 

development and training process. Each model has its own parameters, making parameter 

selection crucial in the training process. Model evaluation is conducted using a confusion 

matrix. Based on confusion matrix analysis, accuracy, precision, recall, and F1-score are 

calculated. Among the five models, SVM achieves the highest accuracy at 87%, followed by 

RF and K-NN. This indicates that the SVM model performs better in binary classification. 

Ground truth analysis is also conducted using the QGIS platform, which visualizes the 

classification results, with SVM providing the best visualization. 

Keywords: CRISP-DM, Machine learning, Pixel-Based, S2L2A, Water bodies classification 

 

1 Introduction 

Water is the most essential element in life. Geographically, water refers to an element 

that shapes the Earth's surface, such as oceans, rivers, lakes, wetlands, snow, ice, and 
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water vapor[1]. Physiologically, water serves as a source of life on Earth, as all living 

organisms require water to survive[2]. However, the role of water is not limited to 

physiological aspects alone. It also plays a crucial role in economic, social, and 

environmental activities. For instance, water is used in agriculture for crop irrigation, in 

industry for production processes, and in recreational activities such as swimming or 

fishing. Therefore, the identification and monitoring of water areas are necessary to 

ensure optimal water resource management and to prevent the impacts of water-related 

disasters[3].  

The identification and monitoring process can be carried out using data obtained from 

remote sensing in space, known as satellite imagery. This approach is chosen because 

image processing results can be measured in real-time at a relatively low cos. In digital 

image processing, the classification of water and non-water areas can be performed using 

a pixel-based image classification approach. Pixel-based image classification is one of 

the most commonly used methods in land use and land cover (LULC) analysis. This 

method utilizes digital values to identify each pixel, which is classified into predefined 

categories based on its characteristic values. A study conducted by Dervisoglu in 2020 on 

the Duden River in Turkey demonstrated that the pixel-based method has both advantages 

and disadvantages, depending on data characteristics and analysis objectives[4], [5], [6]. 

This study aims to analyze the capability of the pixel-based method in classifying water 

and non-water areas. 

 The development of machine learning (ML) enhances the data classification process, 

optimizing image processing for more accurate results. Several classification algorithms 

are commonly used, including Random Forest (RF), Support Vector Machine (SVM), k-

Nearest Neighbors (k-NN), Gaussian Naïve Bayes (GNB), and Classification and 

Regression Tree (CART). Studies have shown that RF outperforms GNB, CART, and 

GBT in machine learning modelling [7], [8], [9], [10]. Several classification algorithms 

are commonly used, including Random Forest (RF), Support Vector Machine (SVM), k-

Nearest Neighbors (k-NN), Gaussian Naïve Bayes (GNB), and Classification and 

Regression Tree (CART) [11], [12], [13]. [14] states that the use of the RF algorithm in 

machine learning modeling performs better than the GNB, CART, and GBT algorithms. 

[15] states that Google Earth Engine (GEE) has been proven to be an effective and fast 
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method for LULC mapping. This is demonstrated by the average accuracy of the SVM, 

RF, and CART models, which are 87.99%, 87.81%, and 84.72%, respectively. This study 

also shows that the SVM model exhibits better accuracy than other models. Therefore, 

the authors aim to reanalyze ML algorithms such as SVM, RF, k-NN, GNB, and CART 

in a different case study with a different dataset. 

The case study used in this research is the classification of water and non-water areas 

in Nakhon Pathom, Thailand. Nakhon Pathom has ponds, rivers, and wetlands that serve 

as water retention areas. This advantage makes Nakhon Pathom the selected area of 

interest for obtaining the dataset used in the development of the machine learning (ML) 

model. This study aims to develop and compare the performance of several ML 

algorithms previously mentioned in classifying water and non-water areas using Sentinel-

2 Level-2A satellite imagery data. The evaluation is based on the accuracy values 

produced by each model. In addition, an analysis is also conducted on the strengths and 

weaknesses of each model in the classification process. 

Based on these objectives, the benefits of this study include creating an ML model 

capable of classifying water and non-water areas, as well as providing recommendations 

on ML algorithms to readers based on the analysis of the strengths and weaknesses of 

each algorithm used in this research. The evaluation process is carried out using a 

confusion matrix by calculating the values of true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) to derive precision, recall, and F1-score values, 

which are then used to determine the accuracy of the ML model. With this information, 

this study can provide readers with insights into the appropriate algorithm for similar case 

studies. 

 

2 Material and Methods 

2.1 Study Area 

This study focuses on Nakhon Pathom Province, Thailand. Nakhon Pathom 

Province is located in the Central Region of Thailand, covering an area of approximately 

2,168 square kilometres. Geographically, Nakhon Pathom Province lies between latitudes 
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13°46′00″N to 14°02′00″N and longitudes 100°00′00″E to 100°20′00″E (Error! R

eference source not found.). The  

 

 

Figure 1. Nakhon Pathom Province, Thailand. 

 

province is situated 56 kilometers west of Bangkok and is administratively divided into 

seven districts. This province contains water bodies such as rivers, ponds, lakes, and 

wetlands, making Nakhon Pathom a valuable area of interest for research related to water 

body classification. 

 

2.2 Cross-Industry Standard Process for Data Mining 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is used as a 

method to structure a framework for data management in this research (Error! Reference s

ource not found.)[16]. The Business Understanding phase has been explained in the 

introduction section. In this phase, the author analyzes problems that could be caused by 

water, leading to the idea of forming a machine learning (ML) model capable of 

classifying water and non-water areas. In the Data Understanding phase, the author 

explores the necessary data and then collects the data to be processed in the data 

preparation phase (Table 1).  
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Figure 2. CRISP-DM workflow. 

 

Table 1. Data in a single CSV file 

Column Description 

Index 

The serial numbers for the data start from 

0_0 to 0_299 (for the water class) and 0_0 

to 0_99 (for the vegetation and building 

classes). These numbers will adjust 

according to the data available. 

Spectral Band 

The extracted spectral bands include B1, 

B2, B3, B4, B5, B6, B7, B8, B8A, B9, 

B11, and B12. 

Class 
The data groups are classified as water (1), 

vegetation (2), and buildings (3). 

Geo 
The coordinate points correspond to the 

actual area. 

 

The next phase is Data Preparation. In this phase, the data is cleaned to ensure that 

the data used is accurate and does not introduce significant bias into the machine learning 

(ML) model (Table 2. 3). The data is extracted based on classes (i.e., water and non-water 

classes). Since the data is obtained using Sentinel-2 Level-2A (S2L2A) satellites, the 
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extraction results consist of the band values available on S2L2A. These values are then 

calculated using the chosen parameter index, and the results of these calculations are used 

as dataset features for training the ML model  (Table 2. 4). In the modeling phase, the 

five selected traditional ML algorithms are trained using the processed dataset, with each 

model having its own parameter tuning (Table 2. 5). The results of this training then move 

to the Evaluation phase using a confusion matrix (Table 3.  1). In this phase, the best 

model is selected based on the highest accuracy achieved. 

2.3 Satellite Sentinel-2 Level-2A  

In S2L2A, the extracted spectral bands consist of 12 bands. The obtained pointing 

data is then extracted and stored in CSV (comma-separated value) format, which is then 

processed into a dataset for the learning model (Table 1). This process falls under the 

category of Data Understanding. 

 In the Data Preparation phase, data collection was conducted from May 2023 to 

April 2024. The water data consisted of 300 points per month, vegetation data had 100 

points per month, and building data had 100 points per month. The total sample data 

obtained was 500 points per month, or 6000 points over the course of one year (May 2023 

– April 2024) (Table 2. 2). This data will be referred to as the initial data. 

Before the extraction phase, we used the built-in feature of S2L2A, namely 

S2Cloudless, which aims to reduce the impact of clouds so that the values and 

characteristics of an area can be clearly captured by the satellite. This process is referred 

to as cloud masking. Therefore, the total sample data obtained after cloud masking is 

displayed in (Table 2. 3). The final data was then extracted using a Python notebook 

library within the Visual Studio Code framework. All data extraction was performed 

through Google Earth Engine (GEE). 

 

Table 2. 2 The total sample points for the initial data 

Water Building Vegetation Total  

3600 1200 1200 6000 
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Table 2. 3 Table of final data 

Water Building Vegetation Total  

3306 1090 1118 5514 

 

The data is then categorized into two classes: water class and non-water class. The 

band values contained in the downloaded CSV file are then calculated using parameters 

such as Bare Soil Index (BSI), Normalized Difference Built-up Index (NDBI), Modified 

Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index 

(NDVI), and Automated Water Extraction Index (AWEIsh). Mathematically, this is 

written as follows: 

𝐵𝑆𝐼 =  
(B11+B4)−(B8+B2)

(B11+B4)+(B8+B2)
        (1) 

𝑁𝐷𝐵𝐼 =  
(B11−B8)

(B11+B8)
         (2) 

MNDWI =  
(B3−B8)

(B3+B8)
         (3) 

NDVI =  
(B8−B4)

(B8+B4)
          (4) 

AWEIsh =  
(B2+2.5∗B3−1.5(B8+B11)−0.25∗B12)

B2+B3+B11+B12
       (5) 

The selection of these five parameters is based on the representation of water, 

building, and vegetation values in the dataset. BSI and NDBI are used as parameters to 

help the model recognize buildings, NDVI is used as a parameter to help the model 

recognize vegetation, and MNDWI and AWEIsh are used as parameters to help the model 

recognize water. If the value of each parameter is 0.5, this can be interpreted as a situation 

where the measured characteristic is in the middle of the possible value range, indicating 

that accurate interpretation may be difficult. For example, an NDVI value of 0.5 may 

indicate the presence of vegetation in suboptimal conditions or a mix of vegetation and 

soil, while an MNDWI value of 0.5 may indicate uncertain water presence or areas with 

high soil moisture. After calculating the parameters, the format of the previous CSV file 

will change as shown in (Table 2. 4).  
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Table 2. 4 Dataset for modelling process 

Column Description 

Index 

The serial numbers for the data start from 

0_0 to 0_299 (for the water class) and 0_0 

to 0_99 (for the vegetation and building 

classes). These numbers will adjust 

according to the data available. 

Spectral Bands 

The extracted spectral bands include B1, 

B2, B3, B4, B5, B6, B7, B8, B8A, B9, 

B11, and B12. 

Class 
The data groups are classified as water (1), 

vegetation (2), and buildings (3). 

Geo 
The coordinate points correspond to the 

actual area. 

Parameter Index 

The values from the calculation of the 

parameters (BSI, NDBI, MNDWI, 

AWEIsh, and NDVI). 

 

 The next phase is the Modelling phase. The modelling process is carried out using 

five (5) different ML algorithms, namely SVM, K-NN, RF, CART, and GNB. The steps 

in the modelling process are almost the same for each model, including defining the x and 

y variables for the parameters and model class, searching for the best parameters for each 

model, classification, and performance evaluation. The distinction in the process lies in 

the selection of parameters (parameter tuning) for each model (Table 2. 5).  

 

Table 2. 5 Parameter tuning for each algorithm 

SVM c: 100; class_weights: None; degree: 2; 

gamma: ‘scale’; kernel: ‘rbf’. 

RF leaf_size: 20; metric: ‘minkowski’; 

n_jobs: -1; n_neighbors: 20; p: 2; 

weights: ‘distance’. 
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k-NN bootstrap: True; max_depth: None; 

min_sampes_leaf: 1; min_samples_spit: 

5; n_estimators: 200; n_jobs: -1. 

CART criterion: ‘entropy’; max_depth: 10; 

min_samles_leaf: 10; min_samples_split: 

10. 

GNB var_smoothing: 1e-09. 

 

The final process is evaluation. The evaluation of the model is performed using 

evaluation matrices such as the confusion matrix. Analysis is carried out on the results 

based on the accuracy, precision, recall, and F1-score values of each algorithm. Below is 

the mathematical formulation for calculating accuracy, precision, recall, and F1-score. 

Accuracy =  
TP+TN

TP+FP+TN+FN
        (1) 

Precision =  
TP

TP+FP
         (2) 

Recall =  
TP

TP+FN
           (3) 

F1 − Score =  
2∗precision∗recall

precision+recall
       

 (4) 

Description : TP (True Positive), TN (True Negative), FP (False Positive), FN 

(False Negative).  

In addition to the calculations above, ground truth is also used as a form of 

evaluation and comparison between the model results and the real-world conditions. 

Ground truthing is performed using the QuantumGIS (QGIS) software. 

3 Results and Discussions 

3.1 Model Analysis 

Based on the results of the confusion matrix, with a dataset of 5514 data points, the 

model using the SVM algorithm successfully identified 2922 water class samples 

correctly as water. The model also correctly identified 1870 non-water class samples as 

non-water. On the other hand, the model incorrectly identified 384 non-water class 

samples as water, and 338 water class samples as non-water (Table 3.  1). The resulting 

ratio scale is 6.64:1, or approximately 7:1. Based on the values derived from the confusion 
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matrix analysis, the results shown in (Table 3.  2) indicate that the SVM model excels in 

classifying both water and non-water classes with a ratio of 6.64:1 and an accuracy of 

87%, followed by the RF and k-NN models with an accuracy of 86%. 

 

Table 3.  1 The acquisition of the confusion matrix values for each model. 

 TP TN FP FN Ratio 

SVM 2922 1870 384 338 6.64:1 

k-NN 2916 1804 390 404 5.94:1 

RF 2918 1822 388 386 6.12:1 

CART 2769 1740 537 468 4.48:1 

GNB 2663 1629 643 579 3.51:1 

 

Table 3.  2 The calculation of the precision, recall, F1-Score, and accuracy values 

produced by the model. 

Class Precision Recall F1-Score 
Accuracy 

Model 

SVM Model 

Water 0.90 0.88 0.89 
0.87 

Non-water 0.83 0.85 0.84 

k-NN Model 

Water 0.88 0.88 0.88 
0.86 

Non-water 0.82 0.82 0.82 

RF Model 

Water 0.88 0.88 0.88 
0.86 

Non-water 0.82 0.83 0.82 

CART Model 

Water 0.86 0.84 0.85 
0.82 

Non-water 0.76 0.79 0.78 

GNB Model 

Water 0.82 0.81 0.81 0.78 
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Non-water 0.72 0.74 0.73 

 

3.2 Visualization of the results of each model using Quantum GIS (QGIS). 

The comparison of the results from each model is done for a region in Nakhon 

Pathom. The blue colour indicates water areas, and the green colour represents non-water 

areas. Using a pixel-based method, it shows detailed results, but when viewed from a 

distance, it displays patches, indicating that adjacent areas have been classified into 

different classes.  

 

 

AOI    SVM    k-NN 

 

 

 

 

 

 

Figure 3. 1 Comparison of the classification results from each model. 

RF CART GNB 
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The results show that, in the classification of water and non-water areas, the SVM 

model performs the best, followed by the RF and k-NN models. This can be confirmed 

based on the accuracy values Table 3.  1 - Table 3.  2 and the provided ground truth 

results. Therefore, SVM, RF, and k-NN are recommended algorithms for the 

classification of water and non-water areas. 

4 Conclusions 

In this study, we understand that the selection of data, algorithms, and methods is 

crucial to the success of building a machine learning (ML) model. For the classification 

of water and non-water areas, we recommend several supervised learning algorithms such 

as SVM, RF, and k-NN. The accuracies achieved by each model are 87%, 86%, and 86%, 

respectively. To improve the model's quality, it is necessary to increase the dataset size 

and split the non-water class into more specific classes, such as vegetation, barren land, 

and buildings. This would result in greater area variability. Future research could consider 

using deep learning methods like Convolutional Neural Networks (CNNs), which are 

better at handling the complexity of image data. Additionally, testing the model on 

datasets from different regions or in varying environmental conditions could provide 

further insights into the model's generalization ability. 
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