Kinerja Deep Convolutional Network untuk Pengenalan Aksara Pallawa

Wiwien Widyastuti


This research trained Deep Convolutional Networks(ConvNets)  to classify hand-written Pallava
alphabet.    The  Deep ConvNets  architecture consists of two  convolutional layers, each  followed by maxpooling layer,    two  Fully-Connected layers.  It had  442.602  parameters.  This model classified  660 images
of hand-written Pallava alphabet into 33 diferent classes.  To make training faster, this research  used
GPU implementation with 384  CUDA  cores. Two different techniques were implemented, Stochastic
Gradient Descent  (SGD)  and Adaptive Gradient, each trained with 10, 20, 30 and 40 epoch. The best
accuracy was 67,5%, achieved by the model with SGD technique trained at 30 epoch.

Keywords: Deep ConvNets, Pallava, GPU, SGD

Full Text:



Aksara Pallawa. wiki/Aksara_Pallawa.

Yann L, Yoshua B, Geoffrey H. Deep Learning. Nature.2015; 521:436-444

Alex K, Ilya S, Geoffrey H. ImageNet Classification with Deep Convolutional Neural Network. Neural Information

Processing Systems Conference.2012

Pierre S, Soumith C, Yann L. Convolutional Neural Networks Applied to House Numbers Digit Classification.

International Conference on Pattern Recognition (ICPR 2012). 2012.

Michael A.N., Neural Networks and Deep Learning. Determination Press.2015.

Wiwien W. Pengenalan Aksara Pallawa Dengan Model Hidden Markov. RETII XI. Yogyakarta. 2016;XI:6.

Adeshpande. A Beginner’s Guide To Understanding Convolutional Neural-Networks. 2017

Adrian R, Lenet – Convolutional Neural Network in Python. Deep Learning Tutorials. 2016.

Yan L, Bottou, Bengio, Haffner. Gradient-based Learning Applied to Document Recognition. Proc. IEEE. 1998;

(11): 2278–2324.



  • There are currently no refbacks.